skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Estuarine Circulation, Mixing, and Residence Times in the Salish Sea
Abstract

A realistic numerical model is used to study the circulation and mixing of the Salish Sea, a large, complex estuarine system on the United States and Canadian west coast. The Salish Sea is biologically productive and supports many important fisheries but is threatened by recurrent hypoxia and ocean acidification, so a clear understanding of its circulation patterns and residence times is of value. The estuarine exchange flow is quantified at 39 sections over 3 years (2017–2019) using the Total Exchange Flow method. Vertical mixing in the 37 segments between sections is quantified as opposing vertical transports: the efflux and reflux. Efflux refers to the rate at which deep, landward‐flowing water is mixed up to become part of the shallow, seaward‐flowing layer. Similarly, reflux refers to the rate at which upper layer water is mixed down to form part of the landward inflow. These horizontal and vertical transports are used to create a box model to explore residence times in a number of different sub‐volumes, seasons, and years. Residence times from the box model are generally found to be longer than those based on simpler calculations of flushing time. The longer residence times are partly due to reflux, and partly due to incomplete tracer homogenization in sub‐volumes. The methods presented here are broadly applicable to other estuaries.

 
more » « less
Award ID(s):
1736242 1634148
PAR ID:
10449982
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A salinity variance framework is used to study mixing in the Salish Sea, a large fjordal estuary. Output from a realistic numerical model is used to create salinity variance budgets for individual basins within the Salish Sea for 2017–19. The salinity variance budgets are used to quantify the mixing in each basin and estimate the numerical mixing, which is found to contribute about one-third of the total mixing in the model. Whidbey Basin has the most intense mixing, due to its shallow depth and large river flow. Unlike in most other estuarine systems previously studied using the salinity variance method, mixing in the Salish Sea is controlled by the river flow and does not exhibit a pronounced spring–neap cycle. A “mixedness” analysis is used to determine when mixed water is expelled from the estuary. The river flow is correlated with mixed water removal, but the coupling is not as tight as with the mixing. Because the mixing is so highly correlated with the river flow, the long-term average approximation M = Q r s out s in can be used to predict the mixing in the Salish Sea and Puget Sound with good accuracy, even without any temporal averaging. Over a 3-yr average, the mixing in Puget Sound is directly related to the exchange flow salt transport. 
    more » « less
  2. Abstract

    The exchange between estuaries and the coastal ocean is a key dynamical driver impacting nutrient and phytoplankton concentrations and regulating estuarine residence time, hypoxia, and acidification. Estuarine exchange flows can be particularly challenging to monitor because many systems have strong vertical and lateral velocity shear and sharp gradients in water properties that vary over space and time, requiring high‐resolution measurements in order to accurately constrain the flux. The total exchange flow (TEF) method provides detailed information about the salinity structure of the exchange, but requires observations (or model resolution) that resolve the time and spatial co‐variability of salinity and currents. The goal of this analysis is to provide recommendations for measuring TEF with the most efficient spatial sampling resolution. Results from three realistic hydrodynamic models were investigated. These model domains included three estuary types: a bay (San Diego Bay), a salt‐wedge (Columbia River), and a fjord (Salish Sea). Model fields were sampled using three different mooring strategies, varying the number of mooring locations (lateral resolution) and sample depths (vertical resolution) with each method. The exchange volume transport was more sensitive than salinity to the sampling resolution. Most (>90%) of the exchange flow magnitude was captured by three to four moorings evenly distributed across the estuarine channel with a minimum threshold of 1–5 sample depths, which varied depending on the vertical stratification. These results can improve our ability to observe and monitor the exchange and transport of water masses efficiently with limited resources.

     
    more » « less
  3. Abstract

    A unique combination of data collected from fixed instruments, spatial surveys, and a long‐term observing network in the Hudson River demonstrate the importance of spatial and temporal variations in atmospheric gas flux. The atmospheric exchanges of oxygen (O2) and carbon dioxide (CO2) exhibit variability at a range of time scales including pronounced modulation driven by spring‐neap variations in stratification and mixing. During weak neap tides, bottom waters become enriched in pCO2and depleted in dissolved oxygen because strong stratification limits vertical mixing and isolates sub‐pycnocline water from atmospheric exchange. Estuarine circulation also is enhanced during neap tides so that bottom waters, and their associated dissolved gases, are transported up‐estuary. Strong mixing during spring tides effectively ventilates bottom waters resulting in enhanced CO2evasion and O2invasion. The spring‐neap modulation in the estuarine portion of the Hudson River is enhanced because fortnightly variations in mixing have a strong influence on phytoplankton dynamics, allowing strong blooms to occur during weak neap tides. During blooms, periods of CO2invasion and O2evasion occur over much of the lower stratified estuary. The along‐estuary distribution of stratification, which decreases up‐estuary, favors enhanced gas exchange near the limit of salt, where vertical stratification is absent. This region, which we call the estuarine gas exchange maximum (EGM), results from the convergence in bottom transport and is analogous to the estuarine turbidity maximum (ETM). Much like the ETM, the EGM is likely to be a common feature in many partially mixed and stratified estuarine systems.

     
    more » « less
  4. Oceanic uptake of anthropogenic carbon dioxide (CO 2 ) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO 2 -induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO 3 ) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO 2 ( pCO 2 ), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers. 
    more » « less
  5. Abstract

    Fjords are conduits for heat and mass exchange between tidewater glaciers and the coastal ocean, and thus regulate near‐glacier water properties and submarine melting of glaciers. Entrainment into subglacial discharge plumes is a primary driver of seasonal glacial fjord circulation; however, outflowing plumes may continue to influence circulation after reaching neutral buoyancy through the sill‐driven mixing and recycling, or reflux, of glacial freshwater. Despite its importance in non‐glacial fjords, no framework exists for how freshwater reflux may affect circulation in glacial fjords, where strong buoyancy forcing is also present. Here, we pair a suite of hydrographic observations measured throughout 2016–2017 in LeConte Bay, Alaska, with a three‐dimensional numerical model of the fjord to quantify sill‐driven reflux of glacial freshwater, and determine its influence on glacial fjord circulation. When paired with subglacial discharge plume‐driven buoyancy forcing, sill‐generated mixing drives distinct seasonal circulation regimes that differ greatly in their ability to transport heat to the glacier terminus. During the summer, 53%–72% of the surface outflow is refluxed at the fjord's shallow entrance sill and is subsequently re‐entrained into the subglacial discharge plume at the fjord head. As a result, near‐terminus water properties are heavily influenced by mixing at the entrance sill, and circulation is altered to draw warm, modified external surface water to the glacier grounding line at 200 m depth. This circulatory cell does not exist in the winter when freshwater reflux is minimal. Similar seasonal behavior may exist at other glacial fjords throughout Southeast Alaska, Patagonia, Greenland, and elsewhere.

     
    more » « less