skip to main content


Title: On the Along‐Slope Heat Loss of the Boundary Current in the Eastern Arctic Ocean
Abstract

This study presents recent observations to quantify oceanic heat fluxes along the continental slope of the Eurasian part of the Arctic Ocean, in order to understand the dominant processes leading to the observed along‐track heat loss of the Arctic Boundary Current (ABC). We investigate the fate of warm Atlantic Water (AW) along the Arctic Ocean continental margin of the Siberian Seas based on 11 cross‐slope conductivity, temperature, depth transects and direct heat flux estimates from microstructure profiles obtained in summer 2018. The ABC loses on average(108) J m−2per 100 km during its propagation along the Siberian shelves, corresponding to an average heat flux of 47 W m−2out of the AW layer. The measured vertical heat flux on the upper AW interface of on average 10 W m−2in the deep basin, and 3.7 W m−2above the continental slope is larger than previously reported values. Still, these heat fluxes explain less than 20% of the observed heat loss within the boundary current. Heat fluxes are significantly increased in the turbulent near‐bottom layer, where AW intersects the continental slope, and at the lee side of a topographic irregularity. This indicates that mixing with ambient colder water along the continental margins is an important contribution to AW heat loss. Furthermore, the cold halocline layer receives approximately the same amount of heat due to upward mixing from the AW, compared to heat input from the summer‐warmed surface layer above. This underlines the importance of both surface warming and increased vertical mixing in a future ice‐free Arctic Ocean in summer.

 
more » « less
NSF-PAR ID:
10449994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Heat fluxes steered by mesoscale eddies may be a significant, but still notquantified, source of heat to the surface mixed layer and sea ice cover inthe Arctic Ocean, as well as a source of nutrients for enhancing seasonalproductivity in the near-surface layers. Here we use 4 years (2007–2011)of velocity and hydrography records from a moored profiler over the LaptevSea slope and 15 months (2008–2009) of acoustic Doppler current profilerdata from a nearby mooring to investigate the structure and dynamics ofeddies at the continental margin of the eastern Eurasian Basin. Typical eddyscales are radii of the order of 10 km, heights of 600 m, andmaximum velocities of ∼0.1 m s−1. Eddies areapproximately equally divided between cyclonic and anticyclonicpolarizations, contrary to prior observations from the deep basins and alongthe Lomonosov Ridge. Eddies are present in the mooring records about 20 %–25 % of the time,taking about 1 week to pass through the mooring at anaverage frequency of about one eddy per month. We found that the eddies observed are formed in two distinct regions – near FramStrait, where the western branch of Atlantic Water (AW) enters the ArcticOcean, and near Severnaya Zemlya, where the Fram Strait and Barents Seabranches of the AW inflow merge. These eddies, embedded in the ArcticCircumpolar Boundary Current, carry anomalous water properties along theeastern Arctic continental slope. The enhanced diapycnal mixing that wefound within EB eddies suggests a potentially important role for eddies inthe vertical redistribution of heat in the Arctic Ocean interior. 
    more » « less
  2. Abstract

    Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers ofm thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8W kg−1compared to backgroundεof less than 10−9W kg−1. Based on the distribution ofεas a function of density ratioRρ, we conclude that double-diffusive convection is largely responsible for the elevatedεobserved over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.

     
    more » « less
  3. Abstract A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m −2 in 2007–08 to >10 W m −2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback. 
    more » « less
  4. Abstract The diffusive layering (DL) form of double-diffusive convection cools the Atlantic Water (AW) as it circulates around the Arctic Ocean. Large DL steps, with heights of homogeneous layers often greater than 10 m, have been found above the AW core in the Eurasian Basin (EB) of the eastern Arctic. Within these DL staircases, heat and salt fluxes are determined by the mechanisms for vertical transport through the high-gradient regions (HGRs) between the homogeneous layers. These HGRs can be thick (up to 5 m and more) and are frequently complex, being composed of multiple small steps or continuous stratification. Microstructure data collected in the EB in 2007 and 2008 are used to estimate heat fluxes through large steps in three ways: using the measured dissipation rate in the large homogeneous layers; utilizing empirical flux laws based on the density ratio and temperature step across HGRs after scaling to account for the presence of multiple small DL interfaces within each HGR; and averaging estimates of heat fluxes computed separately for individual small interfaces (as laminar conductive fluxes), small convective layers (via dissipation rates within small DL layers), and turbulent patches (using dissipation rate and buoyancy) within each HGR. Diapycnal heat fluxes through HGRs evaluated by each method agree with each other and range from ~2 to ~8 W m−2, with an average flux of ~3–4 W m−2. These large fluxes confirm a critical role for the DL instability in cooling and thickening the AW layer as it circulates around the eastern Arctic Ocean. 
    more » « less
  5. null (Ed.)
    Continental slopes – steep regions between the shelf break and abyssal ocean – play key roles in the climatology and ecology of the Arctic Ocean. Here, through review and synthesis, we find that the narrow slope regions contribute to ecosystem functioning disproportionately to the size of the habitat area (∼6% of total Arctic Ocean area). Driven by inflows of sub-Arctic waters and steered by topography, boundary currents transport boreal properties and particle loads from the Atlantic and Pacific Oceans along-slope, thus creating both along and cross-slope connectivity gradients in water mass properties and biomass. Drainage of dense, saline shelf water and material within these, and contributions of river and meltwater also shape the characteristics of the slope domain. These and other properties led us to distinguish upper and lower slope domains; the upper slope (shelf break to ∼800 m) is characterized by stronger currents, warmer sub-surface temperatures, and higher biomass across several trophic levels (especially near inflow areas). In contrast, the lower slope has slower-moving currents, is cooler, and exhibits lower vertical carbon flux and biomass. Distinct zonation of zooplankton, benthic and fish communities result from these differences. Slopes display varying levels of system connectivity: (1) along-slope through property and material transport in boundary currents, (2) cross-slope through upwelling of warm and nutrient rich water and down-welling of dense water and organic rich matter, and (3) vertically through shear and mixing. Slope dynamics also generate separating functions through (1) along-slope and across-slope fronts concentrating biological activity, and (2) vertical gradients in the water column and at the seafloor that maintain distinct physical structure and community turnover. At the upper slope, climatic change is manifested in sea-ice retreat, increased heat and mass transport by sub-Arctic inflows, surface warming, and altered vertical stratification, while the lower slope has yet to display evidence of change. Model projections suggest that ongoing physical changes will enhance primary production at the upper slope, with suspected enhancing effects for consumers. We recommend Pan-Arctic monitoring efforts of slopes given that many signals of climate change appear there first and are then transmitted along the slope domain. 
    more » « less