Abstract Behavior of unstable plasma waves generated by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI) is analyzed in the transitional valley region near 120 km in altitude. The analysis is based on the expression for the FBI/GDI growth rateγthat has been recently generalized to include ion inertia effects for arbitrary altitude and wavelength, within the limits imposed by the fluid and local approaches. It is found that the ion inertia leads to a different instability behavior when the convection component is between the two critical values determined by the ion acoustic speedCsand the ratioribetween the ion collision and gyrofrequency. The most interesting case occurs near 120 km, just below whereri=1. From analysis of electron density gradientsG=∇n/nthat result in marginal instability conditionγ=0 (i.e., critical gradientsG0), there exists a critical scale whereG0=0 and below which all waves are unstable to FBI. Above this scale,G0>0 and gradients need to be sufficiently strongG>G0for the plasma to become unstable through GDI. There also exists a maximum in dependence, which refers to the least unstable scale and gradient. For convection outside of the specified range, no critical or least unstable scale exists, which is a typical situation outside of the transitional valley region. Overall, this analysis shows that the FBI convection thresholds and the GDI critical gradients are modified by the ion inertia and that the effects are most pronounced in the transitional valley region near 120 km.
more »
« less
Toward An Integrated View of Ionospheric Plasma Instabilities: 5. Ion‐Thermal Instability for Arbitrary Ion Magnetization, Density Gradient, and Wave Propagation
Abstract A unified fluid theory of ionospheric electrostatic instabilities is presented that includes thermal effects due to nonisothermal processes for arbitrary ion magnetization, background density gradient, and wave propagation. The theory considers arbitrary altitude within the limits imposed by the fluid and collisional models and integrates the ion‐thermal instability (ITI) with the Farley‐Buneman and gradient‐drift plasma instabilities (FBI and GDI). A general dispersion relation is obtained and solved numerically for the complex wave frequencyωby using either an iterative or a polynomial (quadric) form inω. An analytic explicit expression for the instability growth rate is also derived under the local and slow growth approximations. The previously considered limiting cases of the FBI/ITI at long wavelengths and the FBI/GDI for isothermal plasma are successfully recovered. In the high‐latitudeE‐region near 110 km in altitude, thermal effects are found to be destabilizing at long wavelengths near m and stabilizing at shorter wavelengths near 10 m. In theF‐region, the effects are destabilizing at m but much weaker that those of GDI for moderate gradients. At shorter wavelengths, they become comparable so that a significant fraction of propagation directions at m have positive growth rates, in contrast with the isothermal FBI/GDI case, where stronger gradients are needed to destabilize the plasma at these short wavelengths. The overall conclusion is that the thermal effects modify the growth rate terms traditionally associated with FBI and GDI rather than being purely additive.
more »
« less
- Award ID(s):
- 2028441
- PAR ID:
- 10450013
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Since the 1950s, high frequency and very high frequency radars near the magnetic equator have frequently detected strong echoes caused ultimately by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI). In the 1980s, coordinated rocket and radar campaigns made the astonishing observation of flat‐topped electric fields coincident with both meter‐scale irregularities and the passage of kilometer‐scale waves. The GDI in the daytimeEregion produces kilometer‐scale primary waves with polarization electric fields large enough to drive meter‐scale secondary FBI waves. The meter‐scale waves propagate nearly vertically along the large‐scale troughs and crests and act as VHF tracers for the large‐scale dynamics. This work presents a set of hybrid numerical simulations of secondary FBIs, driven by a primary kilometer‐scale GDI‐like wave. Meter‐scale density irregularities develop in the crest and trough of the kilometer‐scale wave, where the total electric field exceeds the FBI threshold, and propagate at an angle near the direction of total Hall drift determined by the combined electric fields. The meter‐scale irregularities transport plasma across the magnetic field, producing flat‐topped electric fields similar to those observed in rocket data and reducing the large‐scale wave electric field to just above the FBI threshold value. The self‐consistent reduction in driving electric field helps explain why echoes from the FBI propagate near the plasma acoustic speed.more » « less
-
Abstract We present a new version of the high‐resolution Kühlungsborn Mechanistic general Circulation Model (KMCM) extended toz ∼ 450 km. This model is called HIAMCM (HI Altitude Mechanistic general Circulation Model) and explicitly simulates gravity waves (GWs) down to horizontal wavelengths ofλh ∼ 165 km. We find predominant tertiary GWs in the winter thermosphere at middle/high latitudes. These GWs typically have horizontal wavelengthsλh ∼ 300–1,100 km, ground‐based periods∼25–90 min, and intrinsic horizontal phase speedscIh ∼ 250–350 m s−1. Abovez∼ 200 km, the predominant GW horizontal propagation directions are roughly against the background winds from the diurnal tide; the GWs propagate mainly poleward at midnight, eastward at 6 local time (LT), equatorward at noon, and westward at 18 LT. Wintertime GWs atz∼ 300 km having 165 km ≤λh≤ 330 km create a large hot spot over the Southern Andes/Antarctic Peninsula that agrees well with quiet time satellite measurements. Due to cancelation effects, the time‐averaged zonal mean Eliassen‐Palm flux divergence from the resolved GWs in the thermosphere is negligible compared to that of the tides and compared to the zonal component of the time‐averaged zonal mean ion drag. We also find that the thermospheric GWs dissipate mainly from macroturbulent diffusion and, abovez∼ 200 km, from molecular diffusion, whereas the tides dissipate mainly from ion drag. The averaged dissipative heating in the thermosphere due to tides is much stronger than that due to GWs.more » « less
-
Abstract Using a two‐dimensional particle‐in‐cell simulation, we investigate the effects and roles of upper‐hybrid waves (UHW) near the electron diffusion region (EDR). The energy dissipation via the wave‐particle interaction in our simulation agrees withJ · E′measured by magnetospheric multiscale (MMS) spacecraft. It means that UHW contributes to the local energy dissipation. As a result of wave‐particle interactions, plasma parameters which determine the larger‐scale energy dissipation in the EDR are changed. They‐directional current decreases while the pressure tensorPyzincreases/decreases when the agyrotropic beam density is low/high, where(x, y, z)‐coordinates correspond the(L, M, N)‐boundary coordinates. Because the reconnection electric field comes from−∂Pyz/∂z, our result implies that UHW plays an additional role in affecting larger‐scale energy dissipation in the EDR by changing plasma parameters. We provide a simple diagram that shows how the UHW activities change the profiles of plasma parameters near the EDR comparing cases with and without UHW.more » « less
-
Abstract Coastal foredunes provide the first line of defense against rising sea levels and storm surge and for this reason there is increasing interest in understanding and modeling foredune formation and post‐storm recovery. However, there is limited observational data available to provide empirical guidance for the development of model parameterizations. To provide guidance for improved representation of dune grass growth in models, we conducted a two‐year multi‐species transplant experiment on Hog Island, VA, U.S.A. and measured the dependence of plant growth on elevation and distance from the shoreline, as well as the relationship between plant growth and sand accumulation. We tracked total leaf growth (length) and aboveground leaf length and found thatAmmophila breviligulata(American beachgrass) andUniola paniculata(sea oats) grew more thanSpartina patens(saltmeadow cordgrass) by a factor of 15% (though not statistically significant) and 45%, respectively. Our results also suggest a range of basal/frontal area ratios (an important model parameter) from 0.5‐1 and a strong correlation between transplant growth and total sand deposition for all species at the scale of two years, but not over shorter temporal scales. Distance from the shoreline and elevation had no effect on transplant growth rate but did have an effect on survival. Based on transplant survival, the seaward limit of vegetation at the end of the experiment was approximately 30 m from the MHWL and at an elevation of 1.43 m, corresponding to inundation less than 7.5% of the time according to total water level calculations. Results from this experiment provide evidence for the dune‐building capacity of all three species, suggestingS. patensis not a maintainer species, as previously thought, but rather a moderate dune builder even though its growth is less stimulated by sand deposition thanA. breviligulataandU. paniculata. © 2019 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
