skip to main content


Title: Toward An Integrated View of Ionospheric Plasma Instabilities: 5. Ion‐Thermal Instability for Arbitrary Ion Magnetization, Density Gradient, and Wave Propagation
Abstract

A unified fluid theory of ionospheric electrostatic instabilities is presented that includes thermal effects due to nonisothermal processes for arbitrary ion magnetization, background density gradient, and wave propagation. The theory considers arbitrary altitude within the limits imposed by the fluid and collisional models and integrates the ion‐thermal instability (ITI) with the Farley‐Buneman and gradient‐drift plasma instabilities (FBI and GDI). A general dispersion relation is obtained and solved numerically for the complex wave frequencyωby using either an iterative or a polynomial (quadric) form inω. An analytic explicit expression for the instability growth rate is also derived under the local and slow growth approximations. The previously considered limiting cases of the FBI/ITI at long wavelengths and the FBI/GDI for isothermal plasma are successfully recovered. In the high‐latitudeE‐region near 110 km in altitude, thermal effects are found to be destabilizing at long wavelengths near m and stabilizing at shorter wavelengths near 10 m. In theF‐region, the effects are destabilizing at m but much weaker that those of GDI for moderate gradients. At shorter wavelengths, they become comparable so that a significant fraction of propagation directions at m have positive growth rates, in contrast with the isothermal FBI/GDI case, where stronger gradients are needed to destabilize the plasma at these short wavelengths. The overall conclusion is that the thermal effects modify the growth rate terms traditionally associated with FBI and GDI rather than being purely additive.

 
more » « less
Award ID(s):
2028441
NSF-PAR ID:
10450013
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
125
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thermal effects in the ionospheric plasma instabilities including the Farley‐Buneman instability (FBI), the gradient‐drift instability (GDI), and the ion‐thermal instability (ITI) are analyzed, focusing on analytic analysis of the previously obtained general expression of the combined instability growth rate. It is shown that thermal effects lead to generally nonmonotonic behavior of the growth rate with the background electric fieldor, equivalently with the plasma drift speed, in contrast with the conventional quadratic (FBI) or linear (GDI) dependence. The threshold electric field for FBI is demonstrated to exist at all altitudes, although at higher altitudes and/or at longer wavelength the threshold fields become too high to be observed in the ionosphere. The GDI growth rate is shown to be significantly modified by the thermal effects at long wavelengths. In the absence of thermal effects, the growth rate is proportional to a cosine of the flow angle, the angle between the differential plasma drift and the wavevector. Thermal effects result in an additional phase shift that maximizes at an altitude around 120 km, using representative high‐latitude ionospheric parameters, and in an increase in the proportionality coefficient by up to a factor of 2. The study highlights the usefulness of an analytic treatment for revealing additional insights into the instability behavior in the broad range of ionospheric parameters that may remain hidden using only numerical treatment.

     
    more » « less
  2. Abstract

    Behavior of unstable plasma waves generated by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI) is analyzed in the transitional valley region near 120 km in altitude. The analysis is based on the expression for the FBI/GDI growth rateγthat has been recently generalized to include ion inertia effects for arbitrary altitude and wavelength, within the limits imposed by the fluid and local approaches. It is found that the ion inertia leads to a different instability behavior when the convection component is between the two critical values determined by the ion acoustic speedCsand the ratioribetween the ion collision and gyrofrequency. The most interesting case occurs near 120 km, just below whereri=1. From analysis of electron density gradientsG=n/nthat result in marginal instability conditionγ=0 (i.e., critical gradientsG0), there exists a critical scale whereG0=0 and below which all waves are unstable to FBI. Above this scale,G0>0 and gradients need to be sufficiently strongG>G0for the plasma to become unstable through GDI. There also exists a maximum in dependence, which refers to the least unstable scale and gradient. For convection outside of the specified range, no critical or least unstable scale exists, which is a typical situation outside of the transitional valley region. Overall, this analysis shows that the FBI convection thresholds and the GDI critical gradients are modified by the ion inertia and that the effects are most pronounced in the transitional valley region near 120 km.

     
    more » « less
  3. Summary

    The biology literature is rife with misleading information on how to quantify catabolic reaction energetics. The principal misconception is that the sign and value of thestandardGibbs energy () define the direction and energy yield of a reaction; they do not.is one part of theactualGibbs energy of a reaction (ΔGr), with a second part accounting for deviations from the standard composition. It is also frequently assumed thatapplies only to 25 °C and 1 bar; it does not.is a function of temperature and pressure. Here, we review how to determineΔGras a function of temperature, pressure and chemical composition for microbial catabolic reactions, including a discussion of the effects of ionic strength onΔGrand highlighting the large effects when multi‐valent ions are part of the reaction. We also calculateΔGrfor five example catabolisms at specific environmental conditions: aerobic respiration of glucose in freshwater, anaerobic respiration of acetate in marine sediment, hydrogenotrophic methanogenesis in a laboratory batch reactor, anaerobic ammonia oxidation in a wastewater reactor and aerobic pyrite oxidation in acid mine drainage. These examples serve as templates to determine the energy yields of other catabolic reactions at environmentally relevant conditions.

     
    more » « less
  4. Summary

    Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy (ΔGr) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values ofΔGr, we predict a novel microbial metabolism – sulfur comproportionation (3H2S ++ 2H+4S0+ 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic (ΔGr<0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S ++ H2O) and to sulfite (H2S + 34+ 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow‐sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.

     
    more » « less
  5. Abstract

    The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation,, and rotation,, are small compared to unity. Here,ais radius of the particle;Dis the ionic diffusion coefficient;and, whereUandΩare the rectilinear and angular velocities of the particle, respectively. Perturbation expansions for smallandare employed to calculate the nonequilibrium structure of the cloud, whence the force and torque on the particle are determined. In particular, we predict that the sphere experiences a force orthogonal to its directions of translation and rotation. This “lift” force arises from the nonlinear distortion of the cloud under the combined actions of particle translation and rotation. The lift force is given by. Here, ε is the permittivity of the electrolyte;is the Debye length; andis a negative function that decreases in magnitude with increasing. The lift force implies that an unconstrained particle would follow a curved path; an electrokinetic analog of the inertial Magnus effect. Finally, the implication of the lift force on cross‐streamline migration of an electrophoretic particle in shear flow is discussed.

     
    more » « less