skip to main content


Title: Highly Efficient Far‐Red/NIR‐Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy
Abstract

A critical issue in photodynamic therapy (PDT) is inadequate reactive oxygen species (ROS) generation in tumors, causing inevitable survival of tumor cells that usually results in tumor recurrence and metastasis. Existing photosensitizers frequently suffer from relatively low light‐to‐ROS conversion efficiency with far‐red/near‐infrared (NIR) light excitation due to low‐lying excited states that lead to rapid non‐radiative decays. Here, a neutral Ir(III) complex bearing distyryl boron dipyrromethene (BODIPY‐Ir) is reported to efficiently produce both ROS and hyperthermia upon far‐red light activation for potentiating in vivo tumor suppression through micellization of BODIPY‐Ir to form “Micelle‐Ir”. BODIPY‐Ir absorbs strongly at 550–750 nm with a band maximum at 685 nm, and possesses a long‐lived triplet excited state with sufficient non‐radiative decays. Upon micellization, BODIPY‐Ir formsJ‐type aggregates within Micelle‐Ir, which boosts both singlet oxygen generation and the photothermal effect through the high molar extinction coefficient and amplification of light‐to‐ROS/heat conversion, causing severe cell apoptosis. Bifunctional Micelle‐Ir that accumulates in tumors completely destroys orthotopic 4T1 breast tumors via synergistic PDT/photothermal therapy (PTT) damage under light irradiation, and enables remarkable suppression of metastatic nodules in the lungs, together without significant dark cytotoxicity. The present study offers an emerging approach to develop far‐red/NIR photosensitizers toward potent cancer therapy.

 
more » « less
NSF-PAR ID:
10450086
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
32
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In treatment of hypoxic tumors, oxygen‐dependent photodynamic therapy (PDT) is considerably limited. Herein, a new bimetallic and biphasic Rh‐based core–shell nanosystem (Au@Rh‐ICG‐CM) is developed to address tumor hypoxia while achieving high PDT efficacy. Such porous Au@Rh core–shell nanostructures are expected to exhibit catalase‐like activity to efficiently catalyze oxygen generation from endogenous hydrogen peroxide in tumors. Coating Au@Rh nanostructures with tumor cell membrane (CM) enables tumor targeting via homologous binding. As a result of the large pores of Rh shells and the trapping ability of CM, the photosensitizer indocyanine green (ICG) is successfully loaded and retained in the cavity of Au@Rh‐CM. Au@Rh‐ICG‐CM shows good biocompatibility, high tumor accumulation, and superior fluorescence and photoacoustic imaging properties. Both in vitro and in vivo results demonstrate that Au@Rh‐ICG‐CM is able to effectively convert endogenous hydrogen peroxide into oxygen and then elevate the production of tumor‐toxic singlet oxygen to significantly enhance PDT. As noted, the mild photothermal effect of Au@Rh‐ICG‐CM also improves PDT efficacy. By integrating the superiorities of hypoxia regulation function, tumor accumulation capacity, bimodal imaging, and moderate photothermal effect into a single nanosystem, Au@Rh‐ICG‐CM can readily serve as a promising nanoplatform for enhanced cancer PDT.

     
    more » « less
  2. Traditional external light-based Photodynamic Therapy (PDT)’s application is limited to the surface and minimal thickness tumors because of the inefficiency of light in penetrating deep-seated tumors. To address this, the emerging field of radiation-activated PDT (radioPDT) uses X-rays to trigger photosensitizer-containing nanoparticles (NPs). A key consideration in radioPDT is the energy transfer efficiency from X-rays to the photosensitizer for ultimately generating the phototoxic reactive oxygen species (ROS). In this study, we developed a new variant of pegylated poly-lactic-co-glycolic (PEG-PLGA) encapsulated nanoscintillators (NSCs) along with a new, highly efficient ruthenium-based photosensitizer (Ru/radioPDT). Characterization of this NP via transmission electron microscopy, dynamic light scattering, UV-Vis spectroscopy, and inductively coupled plasma mass-spectroscopy showed an NP size of 120 nm, polydispersity index (PDI) of less than 0.25, high NSCs loading efficiency over 90% and in vitro accumulation within the cytosolic structure of endoplasmic reticulum and lysosome. The therapeutic efficacy of Ru/radioPDT was determined using PC3 cell viability and clonogenic assays. Ru/radioPDT exhibited minimal cell toxicity until activated by radiation to induce significant cancer cell kill over radiation alone. Compared to protoporphyrin IX-mediated radioPDT (PPIX/radioPDT), Ru/radioPDT showed higher capacity for singlet oxygen generation, maintaining a comparable cytotoxic effect on PC3 cells. 
    more » « less
  3. Abstract

    Fluorescence‐guided surgery (FGS) is routinely utilized in clinical centers around the world, whereas the combination of FGS and photodynamic therapy (PDT) has yet to reach clinical implementation and remains an active area of translational investigations. Two significant challenges to the clinical translation of PDT for brain cancer are as follows: (1) Limited light penetration depth in brain tissues and (2) Poor selectivity and delivery of the appropriate photosensitizers. To address these shortcomings, we developed nanoliposomal protoporphyrin IX (Nal‐PpIX) and nanoliposomal benzoporphyrin derivative (Nal‐BPD) and then evaluated their photodynamic effects as a function of depth in tissue and light fluence using rat brains. Although red light penetration depth (defined as the depth at which the incident optical energy drops to 1/e, ~37%) is typically a few millimeters in tissues, we demonstrated that the remaining optical energy could induce PDT effects up to 2 cm within brain tissues. Photobleaching and singlet oxygen yield studies between Nal‐BPD and Nal‐PpIX suggest that deep‐tissue PDT (>1 cm) is more effective when using Nal‐BPD. These findings indicate that Nal‐BPD‐PDT is more likely to generate cytotoxic effects deep within the brain and allow for the treatment of brain invading tumor cells centimeters away from the main, resectable tumor mass.

     
    more » « less
  4. Abstract

    Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)‐based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)‐based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.

     
    more » « less
  5. Abstract

    Cancer‐associated fibroblasts (CAFs) are present in many types of tumors and play a pivotal role in tumor progression and immunosuppression. Fibroblast‐activation protein (FAP), which is overexpressed on CAFs, has been indicated as a universal tumor target. However, FAP expression is not restricted to tumors, and systemic treatment against FAP often causes severe side effects. To solve this problem, a photodynamic therapy (PDT) approach is developed based on ZnF16Pc‐loaded and FAP‐specific single chain variable fragment (scFv)‐conjugated apoferritin nanoparticles, or αFAP‐Z@FRT. αFAP‐Z@FRT PDT efficiently eradicates CAFs in tumors without inducing systemic toxicity. When tested in murine 4T1 models, the treatment elicits anti‐cancer immunity, causing suppression of both primary and distant tumors, that is, the abscopal effect. Treatment efficacy is enhanced when αFAP‐Z@FRT PDT is used in combination with anti‐PD1 antibodies. Interestingly, it is found that the PDT treatment not only elicits a cellular immunity against cancer cells, but also stimulates an anti‐CAFs immunity. This is supported by an adoptive cell transfer study, where T cells taken from 4T1‐tumor‐bearing animals treated with αFAP PDT retard the growth of A549 tumors established on nude mice. Overall, this approach is unique for permitting site‐specific eradication of CAFs and inducing a broad spectrum anti‐cancer immunity.

     
    more » « less