skip to main content


Title: Stormwater Runoff and Tidal Flooding Transform Dissolved Organic Matter Composition and Increase Bioavailability in Urban Coastal Ecosystems
Abstract

Coastal drainages contain multiple sources of dissolved organic matter (DOM) that influence OM transformation and fate along inland‐to‐marine gradients. Anthropogenic activities have altered DOM composition in urban drainages, thereby influencing in‐stream breakdown rates, primary productivity, and downstream export. Yet, it is uncertain how hydrologic conditions (i.e., rainfall, tides, shallow groundwater) interact with different sources of DOM to regulate the transformation and export of DOM through urban coastal drainages. We characterized how seasonal changes in hydrologic conditions influence DOM composition and bioavailability in tidally influenced drainages in Miami, FL, USA. We estimated the quality and bioavailability of DOM using compositional proxies based on fluorescence spectroscopy, including parallel‐factor analysis, and measured dissolved organic carbon degradation during laboratory incubations containing a local bacterial community. Interactions between stormwater runoff and tidal amplitude increased the bioavailability of DOM and were positively correlated with predominantly humic‐like components in the wet season and protein‐like components in the dry season. Further, increases in tryptophan fluorescence intensity corresponded with elevated concentrations ofEscherichia coliand enterococci—likely from waste‐impacted groundwater—and contributed substantially to overall DOM bioavailability. Our results provide new evidence of an urban priming effect in which labile autochthonous DOM from anthropogenic sources facilitates microbial degradation of DOM that is driven by seasonal differences in stormwater runoff and tides. As hydrologic conditions in near‐shore aquatic ecosystems shift with urbanization and climate‐driven changes in sea‐level rise, increases in autochthonous sources of bioavailable DOM may impact ecosystem metabolism and affect the quality of DOM exported downstream.

 
more » « less
NSF-PAR ID:
10450124
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
7
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The capacity for coastal river networks to transport and transform dissolved organic matter (DOM) is widely accepted. However, climate‐induced shifts in stormwater runoff and tidal extension alter fresh and marine water source contributions, associated DOM, and processing rates of nutrients entering coastal canals. We investigate how time‐variable interactions among coastal water source contributions influence the concentrations of dissolved organic carbon (DOC), nutrients, and DOM composition in urban canals. We quantified the spatiotemporal variability of DOM quality and nutrient concentrations to determine contributions of tidal marine water, rainwater, stormwater runoff, and groundwater to three coastal urban canals of Miami, Florida (USA). We created a Bayesian Monte Carlo mixing model using measurements of fluorescent DOM (fDOM), DOC concentrations, δ18O and δ2H isotopic signatures, and chloride (Cl). Fractional contributions of groundwater averaged 17% in the dry season and 26% at peak high tide during the subtropical wet season (September–November). The canal‐to‐marine head difference (CMHD) was a primary driver of groundwater contributions to coastal urban canals and monthly patterns of fDOM/DOC. High tide (>1 m) and discharge events were found to connect canals to upstream sources of terrestrial DOM. Loading of terrestrially sourced DOC and DOM is pulsed to urban canals, shunted downstream and supplemented by microbially sourced DOM during the wet season at high tide. Overall, we demonstrate that a combined tracer approach with isotopes and fDOM can help identify groundwater contributions to coastal waterways and that autochthonous fDOM may prime the degradation of carbon or nutrients as the CMHD pushes inland.

     
    more » « less
  2. Abstract

    The Greenland Ice Sheet is losing mass at a remarkable rate as a result of climatic warming. This mass loss coincides with the export of dissolved organic matter (DOM) in glacial meltwaters. However, little is known about how the source and composition of exported DOM changes over the melt season, which is key for understanding its fate in downstream ecosystems. Over the 2015 ablation season, we sampled the outflow of Leverett Glacier, a large land‐terminating glacier of the Greenland Ice Sheet. Dissolved organic carbon (DOC) concentrations and DOM fluorescence were analyzed to assess the evolution of DOM sources over the course of the melt season. DOC concentrations and red‐shifted fluorescence were highly associated (R2 > 0.95) and suggest terrestrial inputs from overridden soils dominated DOM early season inputs before progressive dilution with increasing discharge. During the outburst period, supraglacial drainage events disrupted the subglacial drainage system and introduced dominant protein‐like fluorescence signatures not observed in basal flow. These results suggest that subglacial hydrology and changing water sources influence exported DOC concentration and DOM composition, and these sources were differentiated using fluorescence characteristics. Red‐shifted fluorescence components were robust proxies for DOC concentration. Finally, the majority of DOM flux, which occurs during the outburst and postoutburst periods, was characterized by protein‐like fluorescence from supraglacial and potentially subglacial microbial sources. As protein‐like fluorescence is linked to the bioavailability of DOM, the observed changes likely reflect seasonal variations in the impact of glacial inputs on secondary production in downstream ecosystems due to shifting hydrologic regimes.

     
    more » « less
  3. Streams in the southeastern United States Coastal Plains serve as an essential source of energy and nutrients for important estuarine ecosystems, and dissolved organic matter (DOM) exported from these streams can have profound impacts on the biogeochemical and ecological functions of fluvial networks. Here, we examined hydrological and temperature controls of DOM during low-flow periods from a forested stream located within the Coastal Plain physiographic region of Alabama, USA. We analyzed DOM via combining dissolved organic carbon (DOC) analysis, fluorescence excitation–emission matrix combined with parallel factor analysis (EEM-PARAFAC), and microbial degradation experiments. Four fluorescence components were identified: terrestrial humic-like DOM, microbial humic-like DOM, tyrosine-like DOM, and tryptophan-like DOM. Humic-like DOM accounted for ~70% of total fluorescence, and biodegradation experiments showed that it was less bioreactive than protein-like DOM that accounted for ~30% of total fluorescence. This observation indicates fluorescent DOM (FDOM) was controlled primarily by soil inputs and not substantially influenced by instream production and processing, suggesting that the bulk of FDOM in these streams is transported to downstream environments with limited in situ modification. Linear regression and redundancy analysis models identified that the seasonal variations in DOM were dictated primarily by hydrology and temperature. Overall, high discharge and shallow flow paths led to the enrichment of less-degraded DOM with higher percentages of microbial humic-like and tyrosine-like compounds, whereas high temperatures favored the accumulation of high-aromaticity, high-molecular-weight, terrestrial, humic-like compounds in stream water. The flux of DOC and four fluorescence components was driven primarily by water discharge. Thus, the instantaneous exports of both refractory humic-like DOM and reactive protein-like DOM were higher in wetter seasons (winter and spring). As high temperatures and severe precipitation are projected to become more prominent in the southeastern U.S. due to climate change, our findings have important implications for future changes in the amount, source, and composition of DOM in Coastal Plain streams and the associated impacts on downstream carbon and nutrient supplies and water quality. 
    more » « less
  4. Abstract

    Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow‐weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in‐network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous‐like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo‐oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.

     
    more » « less
  5. Abstract

    Hydrologic controls on carbon processing and export are a critical feature of wetland ecosystems. Hydrologic response to climate variability has important implications for carbon‐climate feedbacks, aquatic metabolism, and water quality. Little is known about how hydrologic processes along the terrestrial‐aquatic interface in low‐relief, depressional wetland catchments influence carbon dynamics, particularly regarding soil‐derived dissolved organic matter (DOM) transport and transformation. To understand the role of different soil horizons as potential sources of DOM to wetland systems, we measured water‐soluble organic matter (WSOM) concentration and composition in soils collected from upland to wetland transects at four Delmarva Bay wetlands in the eastern United States. Spectral metrics indicated that WSOM in shallow organic horizons had increased aromaticity, higher molecular weight, and plant‐like signatures. In contrast, WSOM from deeper, mineral horizons had lower aromaticity, lower molecular weights, and microbial‐like signatures. Organic soil horizons had the highest concentrations of WSOM, and WSOM decreased with increasing soil depth. WSOM concentrations also decreased from the upland to the wetland, suggesting that continuous soil saturation reduces WSOM concentrations. Despite wetland soils having lower WSOM, these horizons are thicker and continuously hydrologically connected to wetland surface and groundwater, leading to wetland soils representing the largest potential source of soil‐derived DOM to the Delmarva Bay wetland system. Knowledge of which soil horizons are most biogeochemically significant for DOM transport in wetland ecosystems will become increasingly important as climate change is expected to alter hydrologic regimes of wetland soils and their resulting carbon contributions from the landscape.

     
    more » « less