Polyamide thin‐film composite (PA‐TFC) membranes make large‐scale desalination effective. Interfacial polymerization (IP) is used to make PA‐TFC membranes, but it may limit the range of monomers that can be used, which hinders progress toward advanced membranes. Layer‐by‐layer (LbL) sequential deposition could circumvent kinetic and thermodynamic limitations of the conventional IP process to facilitate incorporation of different co‐monomers into the membrane. The selective layer needs to be deposited onto a microporous support, but depositing LbL coatings on microporous supports often results in defective membranes. Using a poly(vinyl alcohol) (PVA) primer between the support and the LbL polyamide layer may prevent defect formation. The water permeance and salt rejection of a three layer, PVA‐primed, LbL‐based PA‐TFC membrane are discussed and compared to a membrane made without the PVA primer and a commercially available membrane. Mass transfer resistances are analyzed using a series resistance model and appear to be small or even negligible compared to that of the polyamide layer. Incorporation of a sulfonated co‐monomer into the polyamide via LbL is reported. The combination of a PVA primer layer and LbL sequential deposition may expand the range of co‐monomers that could be used relative to polyamide membranes prepared by the conventional IP process.
more » « less- Award ID(s):
- 2001624
- PAR ID:
- 10450159
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Applied Polymer Science
- Volume:
- 138
- Issue:
- 41
- ISSN:
- 0021-8995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Tarabra, V (Ed.)Thin-film-composite (TFC) nanofiltration membranes represent the pinnacle of membrane technology in water treatment and desalination. These membranes typically consist of a polyamide (PA) selective layer and a membrane support layer, often constructed from commercially available materials like polyethersulfone (PES). However, there exists an alternative approach that involves the use of different polymers, preferably upcycled waste polymers, as a viable support layer for TFC membranes. Successfully implementing the upcycling of waste plastics into high-value support membranes can make a significant contribution to addressing the issue of plastic waste pollution. One of the primary challenges associated with utilizing upcycled polymers as support layers is the potential impact on the polyamide selective layer of TFC membranes, subsequently affecting their performance in terms of permeability, rejection, and antifouling properties. In this study, we demonstrate the successful fabrication of TFC membranes with a support layer crafted from upcycled waste PVC pipe. We conducted a comprehensive investigation into the effects of upcycled PVC on the structural and physicochemical properties of the polyamide layer. The ultrafiltration (UF) support membranes were fabricated from waste PVC pipe via the nonsolvent induced phase separation (NIPS) method. Subsequently, a polyamide layer was synthesized atop the Upcycled PVC membrane using interfacial polymerization (IP). The physicochemical properties and performance of the TFC membranes with upcycled PVC support layer were compared with membranes with research-grade (RG) PVC and commercial PES support layers. The results unveiled that the TFC membrane with upcycled PVC support layer exhibited higher water permeability (18.2 LMH/bar), in contrast to RG TFC (15.5 LMH/bar) and PES TFC membranes (13.7 LMH/bar). Furthermore, the salt rejection capabilities of the upcycled PVC TFC membrane were competitive and well within an acceptable range.more » « less
-
Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at 10 mA cm–2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes.more » « less
-
Abstract Controlled growth of crosslinked polyamide (PA) thin films is demonstrated at the interface of a monomer‐soaked hydrogel and an organic solution of the complementary monomer. Termed gel–liquid interfacial polymerization (GLIP), the resulting PA films are measured to be chemically and mechanically analogous to the active layer in thin film composite (TFC) membranes. PA thin films are prepared using the GLIP process on both a morphologically homogeneous hydrogel prepared from poly(2‐hydroxyethylmethacrylate) and a phase‐separated, heterogeneous hydrogel prepared from poly(acrylamide). Two monomer systems are examined: trimesoyl chloride (TMC) reacting with m‐phenylene diamine (MPD) and TMC reacting with piperazine (PIP). Unlike the self‐limiting growth behavior in TFC membrane fabrication, diffusion‐limited, continuous growth of the PA films is observed, where both the thickness and roughness of the PA layers increase with reaction time. A key morphological difference is found between the two monomer systems using the GLIP process; TMC/MPD produces a ridge‐and‐valley surface morphology whereas TMC/PIP produces nodule/granular structures. The GLIP process represents a unique opportunity to not only explore the pore characteristics (size, spacing, and continuity) on the resulting structure and morphology of the interfacially polymerized thin films, but also a method to modify the surface of (or encapsulate) hydrogels.
-
This study revealed the effects of incorporating ionic liquid (IL) molecules: 1-ethyl, 1-butyl, and 1-octyl-3-methyl-imidazolium chlorides with different alkyl chain lengths, in interfacial polymerization (IP) on the structure and property (i.e., permeate-flux and salt rejection ratio) relationships of resulting RO membranes. The IL additive was added in the aqueous meta-phenylene diamine (MPD; 0.1% w/v) phase, which was subsequently reacted with trimesoyl chloride (TMC; 0.004% w/v) in the hexane phase to produce polyamide (PA) barrier layer. The structure of resulting free-standing PA thin films was characterized by grazing incidence wide-angle X-rays scattering (GIWAXS), which results were correlated with the performance of thin-film composite RO membranes having PA barrier layers prepared under the same IP conditions. Additionally, the membrane surface properties were characterized by zeta potential and water contact angle measurements. It was found that the membrane prepared by the longer chain IL molecule generally showed lower salt rejection ratio and higher permeation flux, possibly due to the inclusion of IL molecules in the PA scaffold. This hypothesis was supported by the GIWAXS results, where a self-assembled surfactant-like structure formed by IL with the longest aliphatic chain length was detected.more » « less
-
Abstract Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.