skip to main content


Title: Calcium concentrations in the lower Columbia River, USA , are generally sufficient to support invasive bivalve spread
Abstract

Dissolved calcium concentration [Ca2+] is thought to be a major factor limiting the establishment and thus the spread of invasive bivalves such as zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels. We measured [Ca2+] in 168 water samples collected along ~100 river‐km of the lower Columbia River, USA, between June 2018 and March 2020. We found [Ca2+] to range from 13 to 18 mg L−1during summer/fall and 5 to 22 mg L−1during the winter/spring. Previous research indicates that [Ca2+] < 12 mg L−1are likely to limit the establishment and spread of invasive bivalves. Thus, our results indicate that there is sufficient Ca2+in most locations in the lower Columbia River to support the establishment of invasive dreissenid mussels, which could join the already widespread and abundant Asian clam (Corbicula fluminea) as the newest invader to an already heavily invaded Columbia River ecosystem. These new data provide important measurements from a heretofore undersampled region of the Columbia River and have important implications for the spread of invasive bivalves and, by extension, the conservation and management of native species and ecosystems.

 
more » « less
Award ID(s):
1639458
PAR ID:
10450165
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Volume:
37
Issue:
6
ISSN:
1535-1459
Page Range / eLocation ID:
p. 889-894
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY While the invasive zebra mussel Dreissena polymorpha has rapidly spread throughout the Great Lakes and inland waterways, it is being displaced by the quagga mussel Dreissena bugensis in shallow water habitats. However, zebra mussels remain dominant in areas with higher water velocity. We hypothesized that the persistence of zebra over quagga mussels in habitats with higher water velocity might result from greater rate and strength of byssal thread attachment. We examined whether zebra mussels relative to quagga mussels have: (1) higher byssal thread synthesis rate, (2) lower dislodgment in flow and (3) greater mechanical force required for detachment from substrate. Specifically, we examined byssal thread synthesis rate and dislodgment of both species in response to water velocities of 0, 50, 100 and 180 cm s–1. Byssal thread synthesis rate was significantly higher for zebra than for quagga mussels at all velocities. Dislodgment from the substrate increased for both species with increasing velocity but was significantly lower for zebra than for quagga mussels. We also tested the mechanical force to detach mussels after short (32 h) and long (two and three months) periods of attachment on hard substrate. Detachment force was significantly higher for zebra than for quagga mussels only after short-term attachment. Higher byssal thread synthesis rate in zebra mussels was a likely factor that minimized their dislodgment in flow and increased short-term attachment strength. Differences in byssal thread synthesis rate between the two species might partly account for the ability of zebra mussels to maintain dominance over quagga mussels in habitats with high velocities. 
    more » « less
  2. Abstract

    Larix cajanderiforests, which occupy vast regions of Siberia, grow atop and protect carbon‐rich permafrost. Regeneration of these forests has important implications for long‐term feedbacks into the climate system and their regeneration is strongest following stand‐replacing fires. The goal of this project was to assess sources of regeneration limitation inL. cajanderiforests in northeastern Siberia. We focused on (1) regeneration potential of stands varying in tree density and (2) analyzing seedling establishment patterns in relationship to microsite conditions (safe sites) in the landscape. Seed sources were assessed through cone counts and stand surveys in the summers of 2017 and 2018 in 17 matureL. cajanderistands.L. cajanderirecruitment patterns in relationship to safe site availability were assessed in 15 areas, spanning approximately 800 km2along the northern portion of the Kolyma River (69.5477° N, 161.3641° E). Density of trees in a stand was negatively related to the number of cones that the average tree produced and stands of moderate density produced more cones per area than either high‐ or low‐density stands.L. cajanderiseedling establishment was facilitated by safe sites in the landscape. We discovered strong evidence that safe sites are considerably more important for seedling establishment in lowland sites than upland areas. The biological explanation for this pattern is presently unknown; however, we hypothesize this pattern is driven by persistently wet (marshy) soils in some lowland sites as a limiter of seedling establishment. Overall, these data suggest the potential for complex linkages between forest density, propagule availability, fire, safe sight colonization, and seedling establishment that may regulate long‐term dynamics in the understudiedL. cajanderiforests of the Siberian Arctic.

     
    more » « less
  3. Abstract

    Dreissenid mussels (including the zebra musselDreissena polymorphaand the quagga musselD. rostriformis) are among the world's most notorious invasive species, with large and widespread ecological and economic effects. However, their long‐term population dynamics are poorly known, even though these dynamics are critical to determining impacts and effective management. We gathered and analyzed 67 long‐term (>10 yr) data sets on dreissenid populations from lakes and rivers across Europe and North America. We addressed five questions: (1) How doDreissenapopulations change through time? (2) Specifically, doDreissenapopulations decline substantially after an initial outbreak phase? (3) Do different measures of population performance (biomass or density of settled animals, veliger density, recruitment of young) follow the same patterns through time? (4) How do the numbers or biomass of zebra mussels or of both species combined change after the quagga mussel arrives? (5) How does body size change over time? We also considered whether current data on long‐term dynamics ofDreissenapopulations are adequate for science and management. IndividualDreissenapopulations showed a wide range of temporal dynamics, but we could detect only two general patterns that applied across many populations: (1) Populations of both species increased rapidly in the first 1–2 yr after appearance, and (2) quagga mussels appeared later than zebra mussels and usually quickly caused large declines in zebra mussel populations. We found little evidence that combinedDreissenapopulations declined over the long term. Different measures of population performance were not congruent; the temporal dynamics of one life stage or population attribute cannot generally be accurately inferred from the dynamics of another. We found no consistent patterns in the long‐term dynamics of body size. The long‐term dynamics ofDreissenapopulations probably are driven by the ecological characteristics (e.g., predation, nutrient inputs, water temperature) and their temporal changes at individual sites rather than following a generalized time course that applies across many sites. Existing long‐term data sets on dreissenid populations, although clearly valuable, are inadequate to meet research and management needs. Data sets could be improved by standardizing sampling designs and methods, routinely collecting more variables, and increasing support.

     
    more » « less
  4. Urban runoff is a significant source of pollutants, including incidental and engineered nanoparticles, to receiving surface waters. The aim of this study is to investigate the impact of urbanization on the concentrations of TiO 2 engineered particles in urban surface waters. The study area boundaries are limited to the Lower Saluda and Nicholas Creek-Broad River from upstream, and outlet of upper Congaree River in Columbia, South Carolina, United States from downstream. This sampling area captures a significant footprint of the urban area of the city of Columbia. Water samples were collected daily from four sites during two rain events. All samples were analyzed for total metal concentrations following acid digestion and for particle number concentration and elemental composition using single particle-inductively coupled plasma-time of flight-mass spectrometry (SP-ICP-TOF-MS). The Ti/Nb ratios in the Broad and Congaree River samples are generally higher than those of natural background ratios, indicating contamination of these two rivers with anthropogenic Ti-bearing particles. Clustering of multi-metal nanoparticles (mmNPs) demonstrated that Ti-bearing particles are distributed mainly among three clusters, FeTiMn, AlSiFe, and TiMnFe, which are typical of naturally occurring iron oxide, clay, and titanium oxide particles, indicating the absence of significant number of anthropogenic multi-element Ti-bearing particles. Thus, anthropogenic Ti-bearing particles are attributed to single-metal particles; that is pure TiO 2 particles. The total concentration of anthropogenic TiO 2 in the rivers was determined by mass balance calculation using bulk titanium concentration and increases in Ti/Nb above the natural background ratio. The concentration of anthropogenic TiO 2 increases following the order 0 to 24 μg L −1 in the Lower Saluda River <0 to 663 μg L −1 in the Broad River <43 to 1051 μg L −1 in Congaree River at Cayce <58 to 5050 μg L −1 in the Congaree River at Columbia. The concentration of anthropogenic TiO 2 increases with increases in urban runoff. The source of anthropogenic TiO 2 is attributed to diffuse urban runoff. This study demonstrates that diffuse urban runoff results in high concentrations of TiO 2 particles in urban surface waters during and following rainfall events which may pose increased risks to aquatic organisms during these episodic events. 
    more » « less
  5. Abstract

    The mechanical properties of biofilms can be used to predict biofilm deformation under external forces, for example, under fluid flow. We used magnetic tweezers to spatially map the compliance ofPseudomonas aeruginosabiofilms at the microscale, then applied modeling to assess its effects on biofilm deformation. Biofilms were grown in capillary flow cells with Reynolds numbers (Re) ranging from 0.28 to 13.9, bulk dissolved oxygen (DO) concentrations from 1 mg/L to 8 mg/L, and bulk calcium ion (Ca2+) concentrations of 0 and 100 mg CaCl2/L. Higher Re numbers resulted in more uniform biofilm morphologies. The biofilm was stiffer at the center of the flow cell than near the walls. Lower bulk DO led to more stratified biofilms. Higher Ca2+concentrations led to increased stiffness and more uniform mechanical properties. Using the experimental mechanical properties, fluid–structure interaction models predicted up to 64% greater deformation for heterogeneous biofilms, compared with a homogeneous biofilms with the same average properties. However, the deviation depended on the biofilm morphology and flow regime. Our results show significant spatial mechanical variability exists at the microscale, and that this variability can potentially affect biofilm deformation. The average biofilm mechanical properties, provided in many studies, should be used with caution when predicting biofilm deformation.

     
    more » « less