Abstract. Given the short span of instrumental precipitationrecords in the South American Altiplano, longer-term hydroclimatic recordsare needed to understand the nature of climate variability and to improvethe predictability of precipitation, a key natural resource for thesocioeconomic development in the Altiplano and adjacent arid lowlands. Inthis region grows Polylepis tarapacana, a long-lived tree species that is very sensitive tohydroclimatic changes and has been widely used for tree-ring studies in thecentral and southern Altiplano. However, in the northern sector of thePeruvian and Chilean Altiplano (16–19∘ S)still exists a gap of high-resolution hydroclimatic data based on tree-ringrecords. Our study provides an overview of the temporal evolution of thelate-spring–mid-summer precipitation for the period 1625–2013 CE at thenorthern South American Altiplano, allowing for the identification of wet ordry periods based on a regional reconstruction from three P. tarapacana chronologies. Anincrease in the occurrence of extreme dry events, together with a decreasingtrend in the reconstructed precipitation, has been recorded since the 1970sin the northern Altiplano within the context of the last ∼4 centuries. The average precipitation over the last 17 years stands outas the driest in our 389-year reconstruction. We reveal a temporal andspatial synchrony across the Altiplano region of dry conditions since themid-1970s. Independent tree-ring-based hydroclimate reconstructions andseveral paleoclimatic records based on other proxies available for thetropical Andes record this synchrony. The influence of El Niño–SouthernOscillation (ENSO) on the northern Altiplano precipitation was detected byour rainfall reconstruction that showed past drier conditions in our studyregion associated with ENSO warm events. The spectral properties of therainfall reconstruction showed strong imprints of ENSO variability atdecadal, sub-decadal, and inter-annual timescales, in particular from thePacific NIÑO 3 sector. Overall, the recent reduction in precipitation incomparison with previous centuries, the increase in extreme dry events andthe coupling between precipitation and ENSO variability reported by thiswork is essential information in the context of the growing demand for waterresources in the Altiplano. This study will contribute to a betterunderstanding of the vulnerability and resilience of the region to theprojected evapotranspiration increase for the 21st century associated withglobal warming.
more »
« less
Reconstructing Extreme Precipitation in the Sacramento River Watershed Using Tree‐Ring Based Proxies of Cold‐Season Precipitation
Abstract Extreme precipitation and consequent floods are some of California's most damaging natural disasters, but they are also critical to the state's water supply. This motivates the need to better understand the long‐term variability of these events across the region. This study examines the possibility of reconstructing extreme precipitation occurrences in the Sacramento River Watershed (SRW) of Northern California using a network of tree‐ring based moisture proxies across the Western US. We first develop a gridded reconstruction of the cold‐season standardized precipitation index (SPI) west of 100°W. We then develop an annual index of regional extreme precipitation occurrences in the SRW and use elastic net regression to relate that index to the gridded, tree‐ring based SPI. These regressions, built using SPI data across the SRW only and again across a broader region of the Western US, are used to develop reconstructions of interannual variability in extreme precipitation frequency back to 1400 CE. The SPI reconstruction is skillful across much of the West, including the Sacramento Valley and Central Oregon. The reconstructed SPI also captures historical interannual variations in extreme SRW precipitation, although individual events may be under‐ or over‐estimated. The reconstructions show more SRW extremes from 1580 to 1700 and 1850 to 1915, a dearth of extremes prior to 1550, and a 2–8 year oscillation after 1550. Using tree‐ring proxies beyond the SRW often dampens the reconstructed extremes, but these data occasionally help to identify known extreme events. Overall, reconstructions of SRW extreme precipitation can help to understand better the historic variability of these events.
more »
« less
- Award ID(s):
- 1702273
- PAR ID:
- 10450186
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 4
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Sava River Basin (SRB) includes six countries (Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Albania, and Montenegro), with the Sava River (SR) being a major tributary of the Danube River. The SR originates in the mountains (European Alps) of Slovenia and, because of a recent Slovenian government initiative to increase clean, sustainable energy, multiple hydropower facilities have been constructed within the past ~20 years. Given the importance of this river system for varying demands, including hydropower (energy production), information about past (paleo) dry (drought) and wet (pluvial) periods would provide important information to water managers and planners. Recent research applying traditional regression techniques and methods developed skillful reconstructions of seasonal (April–May–June–July–August–September or AMJJAS) streamflow using tree-ring-based proxies. The current research intends to expand upon these recent research efforts and investigate developing reconstructions of seasonal (AMJJAS) precipitation applying novel Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) techniques. When comparing the reconstructed AMJJAS precipitation datasets, the AI/ML/DL techniques statistically outperformed traditional regression techniques. When comparing the SRB AMJJAS precipitation reconstruction developed in this research to the SRB AMJJAS streamflow reconstruction developed in previous research, the temporal variability of the two reconstructions compared favorably. However, pluvial magnitudes of extreme periods differed, while drought magnitudes of extreme periods were similar, confirming drought is likely better captured in tree-ring-based proxy reconstructions of hydrologic variables.more » « less
-
Abstract Paleoclimate data play a critical role in contextualizing recent hydroclimate extremes, but asymmetries in tree‐ring responses to extreme climate conditions pose challenges for reconstruction and interpretation of past climate. Here we establish the extent to which existing tree‐ring records capture precipitation extremes in western North America and evaluate climate factors hypothesized to lead to asymmetric extreme capture, including timing of precipitation, seasonal temperatures, snowpack, and atmospheric river events. We find that while there is dry‐biased asymmetry in one third of western North American tree‐ring records, 45% of sites capture wet extremes as well as or better than dry extremes. Summer extremes are rarely captured at any sites. Latitude and elevation affect site‐level extreme responses, as do seasonal climate conditions, particularly in the autumn and spring. Directly addressing asymmetric extreme value capture in tree‐ring records can aid our interpretation of past climate and help identify alternative avenues for future reconstructions.more » « less
-
Abstract Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.more » « less
-
Abstract The timing and intensity of precipitation varies from year‐to‐year and is expected to change in the future. Assessing the impacts of this moisture delivery variability on tree growth is important both for future forest health and for our interpretation of pre‐instrumental tree‐ring records. Here, we used the Vaganov‐Shashkin model to investigate how changes in precipitation delivery impact tree growth at five sites representing four species in two North American river basins with high precipitation variability but different seasonal cycles. Evenly distributed precipitation increased tree growth in the Lower Sacramento watershed, while the water‐limited South Platte benefited from concentrated precipitation early in the growing season. Although most experimental simulations retained the pattern of high‐ and low‐growth years, tree growth was reduced with fewer, more intense precipitation events, which could affect interpretation of past climate extremes. Under the RCP4.5 scenario, projected warming offset the potential benefits of increased precipitation on tree growth.more » « less
An official website of the United States government
