skip to main content


Title: RnhP is a plasmid‐borne RNase HI that contributes to genome maintenance in the ancestral strain Bacillus subtilis NCIB 3610
Abstract

RNA‐DNA hybrids form throughout the chromosome during normal growth and under stress conditions. When left unresolved, RNA‐DNA hybrids can slow replication fork progression, cause DNA breaks, and increase mutagenesis. To remove hybrids, all organisms use ribonuclease H (RNase H) to specifically degrade the RNA portion. Here we show that, in addition to chromosomally encoded RNase HII and RNase HIII,Bacillus subtilisNCIB 3610 encodes a previously uncharacterized RNase HI protein, RnhP, on the endogenous plasmid pBS32. Like other RNase HI enzymes, RnhP incises Okazaki fragments, ribopatches, and a complementary RNA‐DNA hybrid. We show that while chromosomally encoded RNase HIII is required for pBS32 hyper‐replication, RnhP compensates for the loss of RNase HIII activity on the chromosome. Consequently, loss of RnhP and RNase HIII impairs bacterial growth. We show that the decreased growth rate can be explained by laggard replication fork progression near the terminus region of the right replichore, resulting in SOS induction and inhibition of cell division. We conclude that all three functional RNase H enzymes are present inB. subtilisNCIB 3610 and that the plasmid‐encoded RNase HI contributes to chromosome stability, while the chromosomally encoded RNase HIII is important for chromosome stability and plasmid hyper‐replication.

 
more » « less
Award ID(s):
1714539
PAR ID:
10450217
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
115
Issue:
1
ISSN:
0950-382X
Page Range / eLocation ID:
p. 99-115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R‐loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R‐loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R‐loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction betweenEscherichia coliRNase HI and the single‐stranded DNA‐binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation ofrnhAto encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media‐dependent slow‐growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R‐loop accumulation enhance or suppress, respectively, the growth phenotype ofrnhAK60E rep::kanstrains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R‐loops that block DNA replication.

     
    more » « less
  2. In Escherichia coli, several enzymes have been identified that participate in completing replication on the chromosome, including RecG, SbcCD, ExoI, and RecBCD. However, other enzymes are likely to be involved and the precise enzymatic mechanism by which this reaction occurs remains unknown. Two steps predicted to be necessary to complete replication are removal of Okazaki RNA fragments and ligation of the nascent strands at convergent replication forks. E. coli encodes two RNases that remove RNA-DNA hybrids, rnhA and rnhB, as well as two ligases, ligA and ligB. Here, we used replication profiling to show that rnhA and ligA, encoding RNase HI and Ligase A, participate in the completion reaction. Deletion of rnhA impaired the ability to complete replication and resulted in over-replication in the terminus region. It additionally suppressed initiation events from oriC, suggesting a role for the enzyme in oriC-dependent initiation, as has been suggested previously. We also show that a temperature-sensitive mutation in Ligase A led to over-replication at sites where replication completes, and that degradation at these sites occurred upon shifting to the nonpermissive temperature. Deletion of rnhB or ligB did not affect the growth or profile of replication on the genome. 
    more » « less
  3. null (Ed.)
    Ribonuclease (RNase) H2 is a key enzyme for the removal of RNA found in DNA-RNA hybrids, playing a fundamental role in biological processes such as DNA replication, telomere maintenance, and DNA damage repair. RNase H2 is a trimer composed of three subunits, RNASEH2A being the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in transformed and cancer cells. In this study, we used a bioinformatics approach to identify RNASEH2A co-expressed genes in different human tissues to underscore biological processes associated with RNASEH2A expression. Our analysis shows functional networks for RNASEH2A involvement such as DNA replication and DNA damage response and a novel putative functional network of cell cycle regulation. Further bioinformatics investigation showed increased gene expression in different types of actively cycling cells and tissues, particularly in several cancers, supporting a biological role for RNASEH2A but not for the other two subunits of RNase H2 in cell proliferation. Mass spectrometry analysis of RNASEH2A-bound proteins identified players functioning in cell cycle regulation. Additional bioinformatic analysis showed that RNASEH2A correlates with cancer progression and cell cycle related genes in Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) Pan Cancer datasets and supported our mass spectrometry findings. 
    more » « less
  4. Silhavy, Thomas J. (Ed.)
    ABSTRACT Expression of the Escherichia coli dnaN -encoded β clamp at ≥10-fold higher than chromosomally expressed levels impedes growth by interfering with DNA replication. A mutant clamp (β E202K bearing a glutamic acid-to-lysine substitution at residue 202) binds to DNA polymerase III (Pol III) with higher affinity than the wild-type clamp, suggesting that its failure to impede growth is independent of its ability to sequester Pol III away from the replication fork. Our results demonstrate that the dnaN E202K strain underinitiates DNA replication due to insufficient levels of DnaA-ATP and expresses several DnaA-regulated genes at altered levels, including nrdAB , that encode the class 1a ribonucleotide reductase (RNR). Elevated expression of nrdAB was dependent on hda function. As the β clamp-Hda complex regulates the activity of DnaA by stimulating its intrinsic ATPase activity, this finding suggests that the dnaN E202K allele supports an elevated level of Hda activity in vivo compared with the wild-type strain. In contrast, using an in vitro assay reconstituted with purified components the β E202K and wild-type clamp proteins supported comparable levels of Hda activity. Nevertheless, co-overexpression of the nrdAB -encoded RNR relieved the growth defect caused by elevated levels of the β clamp. These results support a model in which increased cellular levels of DNA precursors relieve the ability of elevated β clamp levels to impede growth and suggest either that multiple effects stemming from the dnaN E202K mutation contribute to elevated nrdAB levels or that Hda plays a noncatalytic role in regulating DnaA-ATP by sequestering it to reduce its availability. IMPORTANCE DnaA bound to ATP acts in initiation of DNA replication and regulates the expression of several genes whose products act in DNA metabolism. The state of the ATP bound to DnaA is regulated in part by the β clamp-Hda complex. The dnaN E202K allele was identified by virtue of its inability to impede growth when expressed ≥10-fold higher than chromosomally expressed levels. While the dnaN E202K strain exhibits several phenotypes consistent with heightened Hda activity, the wild-type and β E202K clamp proteins support equivalent levels of Hda activity in vitro . Taken together, these results suggest that β E202K -Hda plays a noncatalytic role in regulating DnaA-ATP. This, as well as alternative models, is discussed. 
    more » « less
  5. Abstract

    Retrons are bacterial retroelements that produce single-stranded, reverse-transcribed DNA (RT-DNA) that is a critical part of a newly discovered phage defense system. Short retron RT-DNAs are produced from larger, structured RNAs via a unique 2′-5′ initiation and a mechanism for precise termination that is not yet understood. Interestingly, retron reverse transcriptases (RTs) typically lack an RNase H domain and, therefore, depend on endogenous RNase H1 to remove RNA templates from RT-DNA. We find evidence for an expanded role of RNase H1 in the mechanism of RT-DNA termination, beyond the mere removal of RNA from RT-DNA:RNA hybrids. We show that endogenous RNase H1 determines the termination point of the retron RT-DNA, with differing effects across retron subtypes, and that these effects can be recapitulated using a reduced, in vitro system. We exclude mechanisms of termination that rely on steric effects of RNase H1 or RNA secondary structure and, instead, propose a model in which the tertiary structure of the single-stranded RT-DNA and remaining RNA template results in termination. Finally, we show that this mechanism affects cellular function, as retron-based phage defense is weaker in the absence of RNase H1.

     
    more » « less