skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: Predicting intraspecific trait variation among California's grasses
Abstract

Plant species can show considerable morphological and functional variation along environmental gradients. This intraspecific trait variation (ITV) can have important consequences for community assembly, biotic interactions, ecosystem functions and responses to global change. However, directly measuring ITV across many species and wide geographic areas is often infeasible. Thus, a method to predict spatial variation in a species’ functional traits could be valuable.

We measured specific leaf area (SLA), height and leaf area (LA) of grasses across California, covering 59 species at 230 sampling locations. We asked how these traits change along climate gradients within each species and used machine learning to predict local trait values for any species at any location based on phylogenetic position, local climate and that species’ mean traits. We then examined how much these local predictions alter patterns of assemblage‐level trait variation across the state.

Most species exhibited higher SLA and grew taller at higher temperatures and produced larger leaves in drier conditions. The random forests predicted spatial variation in functional traits very accurately, with correlations up to 0.97. Because trait records were spatially biased towards warmer areas, and these areas tend to have higher SLA individuals within each species, species means of SLA were upwardly biased. As a result, using species means over‐estimates SLA in the cooler regions of the state. Our results also suggest that height may be substantially under‐predicted in the warmest areas.

Synthesis. Using only species mean traits to characterize the functional composition of communities risks introducing substantial error into trait‐based estimates of ecosystem properties including decomposition rates or NPP. The high performance of random forests in predicting local trait values provides a way forward for estimating high‐resolution patterns of ITV without a massive data collection effort.

 
more » « less
NSF-PAR ID:
10450222
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
7
ISSN:
0022-0477
Page Range / eLocation ID:
p. 2662-2677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Under fire suppression, many tropical savannas transform into forests. Forest expansion entails changes in environmental variables and plant community structure. We hypothesized that forest expansion into savanna results in a shift in community‐weighted mean functional traits from stress tolerance to competitiveness, with generalist species having trait values intermediate between those of specialists of savanna and forest habitats.

    We studied 30 plots distributed over three savanna–forest boundaries undergoing forest expansion in the Brazilian Cerrado, capturing a gradient from open savanna to recently formed forest. We measured functional traits of 116 woody species of savanna specialist, generalist and forest specialist functional groups and quantified changes in species composition and mean traits across the basal area gradient.

    We identified two main axes of species traits. The first separated forest and generalist species from savanna specialists, with the latter possessing traits associated with resistance to disturbance and stress— such as thick leaves, thick bark, slower height growth and lower shade tolerance. Our second trait axis separated shrubs and understorey trees from pioneer species. Generalist species’ traits did not differ substantially from forest species, nor did they tend to have a typical pioneer strategy.

    Community‐weighted trait means changed linearly with forest development. There was a steady increase in traits associated with competitive dominance rather than stress tolerance and fire resistance, indicating a wholesale shift in the selective environment. Several of these patterns—for example, increasing height and decreasing light requirements—are common in old‐field succession. In contrast to old‐field succession, we found that SLA increased, leaf thickness decreased and wood density stayed constant.

    The assembly of forests appears to be shaped by environmental filters that contribute to a functional trajectory distinct from most other studied ecosystems. Our results highlight the importance of the functional composition of the early community and of the early colonizers of the open environment. Differences between savanna and forest specialists reflect the selective effects of the contrasting environments, while the traits of generalists—and their interaction with environmental filters—drive the dynamics of forest expansion.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    Traits differentially adapt plant species to particular conditions generating compositional shifts along environmental gradients. As a result, community‐scale trait values show concomitant shifts, termed trait‒environment relationships. Trait‒environment relationships are often assessed by evaluating community‐weighted mean (CWM) traits observed along environmental gradients. Regression‐based approaches (CWMr) assume that local communities exhibit traits centred at a single optimum value and that traits do not covary meaningfully. Evidence suggests that the shape of trait‒abundance relationships can vary widely along environmental gradients—reflecting complex interactions—and traits are usually interrelated. We used a model that accounts for these factors to explore trait‒environment relationships in herbaceous forest plant communities in Wisconsin (USA).

    We built a generalized linear mixed model (GLMM) to analyse how abundances of 185 species distributed among 189 forested sites vary in response to four functional traits (vegetative height—VH, leaf size—LS, leaf mass per area—LMA and leaf carbon content), six environmental variables describing overstorey, soil and climate conditions, and their interactions. The GLMM allowed us to assess the nature and relative strength of the resulting 24 trait‒environment relationships. We also compared results between GLMM and CWMr to explore how conclusions differ between approaches.

    The GLMM identified five significant trait‒environment relationships that together explain ~40% of variation in species abundances across sites. Temperature appeared as a key environmental driver, with warmer and more seasonal sites favouring taller plants. Soil texture and temperature seasonality affected LS and LMA; seasonality effects on LS and LMA were nonlinear, declining at more seasonal sites. Although often assumed for CWMr, only some traits under certain conditions had centred optimum trait‒abundance relationships. CWMr more liberally identified (13) trait‒environment relationships as significant but failed to detect the temperature seasonality‒LMA relationship identified by the GLMM.

    Synthesis. Although GLMM represents a more methodologically complex approach than CWMr, it identified a reduced set of trait‒environment relationships still capable of accounting for the responses of forest understorey herbs to environmental gradients. It also identified separate effects of mean and seasonal temperature on LMA that appear important in these forests, generating useful insights and supporting broader application of GLMM approach to understand trait‒environment relationships.

     
    more » « less
  3. Abstract

    Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.

    We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.

    We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.

    We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.

    Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.

     
    more » « less
  4. Abstract

    A central goal at the interface of ecology and conservation is understanding how the relationship between biodiversity and ecosystem function (B–EF) will shift with changing climate. Despite recent theoretical advances, studies which examine temporal variation in the functional traits and mechanisms (mass ratio effects and niche complementarity effects) that underpin the B–EF relationship are lacking.

    Here, we use 13 years of data on plant species composition, plant traits, local‐scale abiotic variables, above‐ground net primary productivity (ANPP), and climate from the alpine tundra of Colorado (USA) to investigate temporal dynamics in the B–EF relationship. To assess how changing climatic conditions may alter the B–EF relationship, we built structural equation models (SEMs) for 11 traits across 13 years and evaluated the power of different trait SEMs to predict ANPP, as well as the relative contributions of mass ratio effects (community‐weighted mean trait values; CWM), niche complementarity effects (functional dispersion; FDis) and local abiotic variables. Additionally, we coupled linear mixed effects models with Multimodel inference methods to assess how inclusion of trait–climate interactions might improve our ability to predict ANPP through time.

    In every year, at least one SEM exhibited good fit, explaining between 19.6% and 57.2% of the variation in ANPP. However, the identity of the trait which best explained ANPP changed depending on winter precipitation, with leaf area, plant height and foliar nitrogen isotope content (δ15N) SEMs performing best in high, middle and low precipitation years, respectively. Regardless of trait identity, CWMs exerted a stronger influence on ANPP than FDis and total biotic effects were always greater than total abiotic effects. Multimodel inference reinforced the results of SEM analysis, with the inclusion of climate–trait interactions marginally improving our ability to predict ANPP through time.

    Synthesis. Our results suggest that temporal variation in climatic conditions influences which traits, mechanisms and abiotic variables were most responsible for driving the B–EF relationship. Importantly, our findings suggest that future research should consider temporal variability in the B–EF relationship, particularly how the predictive power of individual functional traits and abiotic variables may fluctuate as conditions shift due to climate change.

     
    more » « less
  5. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

     
    more » « less