skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Using temporal occupancy to predict avian species distributions
Abstract Aim

Species distribution models (SDMs) are ubiquitous in ecology to predict species occurrence throughout their range. Typically, SDMs are created using presence‐only or presence–absence data. We hypothesize that the continuous metric of temporal occupancy, the proportion of time a species is observed at a given site, provides more detail about species occurrence than binary presence‐based SDMs.

Location

North America.

Methods

We compared SDMs for 189 focal species using four modelling methods to determine whether North American avian species distributions are better predicted using temporal occupancy over presence–absence. We used the North American Breeding Bird Survey and built SDMs based on all sites sampled consecutively between 2001 and 2015, as well as on a subset of only five time points within the 15‐year sampling window. Each model used the same environmental inputs to predict species range. Each SDM was cross‐validated temporally and spatially.

Results

Species distributions were generally better predicted using temporal occupancy rather than presence–absence when using either a five‐year or fifteen‐year sampling window. Species that occurred in a smaller proportion of their predicted range were particularly better predicted with SDMs using temporal occupancy. Temporal occupancy SDMs had lower false discovery and false‐positive rates but higher false‐negative rates than presence–absence models.

Main conclusions

Temporal occupancy is a valuable metric that can improve predictions of species occurrence for birds and may improve conservation planning and design efforts.

 
more » « less
NSF-PAR ID:
10450234
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Diversity and Distributions
Volume:
27
Issue:
8
ISSN:
1366-9516
Page Range / eLocation ID:
p. 1477-1488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We examined the relative importance of competitor abundance and environmental variables in determining the species distributions of 175 bird species across North America. Unlike previous studies, which tend to model distributions in terms of presence and absence, we take advantage of a geographically extensive dataset of community time series to model the temporal occupancy of species at sites throughout their expected range.

    Location

    North America.

    Time period

    2001–2015.

    Major taxa studied

    One hundred and seventy‐five bird species.

    Methods

    We calculated variation in temporal occupancy across species’ geographic ranges and used variance partitioning and Bayesian hierarchical models to evaluate the relative importance of (a) the abundance of potential competitors and (b) the environment (elevation, temperature, precipitation, vegetation index) for determining temporal occupancy. We also created a null model to test whether designated competitor species predicted variation in temporal occupancy better than non‐competitor species.

    Results

    On average, the environment explained more variance in temporal occupancy than competitor abundance, but this varied by species. For certain species, competitor abundance explained more variance than the environment. Migrant species with smaller range sizes and greater range overlap with competitors had a higher proportion of variance explained by competitor abundance than the environment. The abundance of competitor species had a stronger effect on focal species temporal occupancy than non‐competitor species in the null model.

    Main conclusions

    Temporal occupancy represents an underutilized method for describing species distributions that is complementary to presence/absence or abundance. Geographic variation in temporal occupancy was explained by both biotic and abiotic drivers, and abiotic drivers explained more variation in temporal occupancy than abundance on average. Species traits also play a role in determining whether variation in temporal occupancy is best explained by biotic or abiotic drivers. The results of our study can improve species distribution models, particularly by accounting for competitive interactions.

     
    more » « less
  2. Abstract Aim

    Species distribution models (SDMs) that integrate presence‐only and presence–absence data offer a promising avenue to improve information on species' geographic distributions. The use of such ‘integrated SDMs’ on a species range‐wide extent has been constrained by the often limited presence–absence data and by the heterogeneous sampling of the presence‐only data. Here, we evaluate integrated SDMs for studying species ranges with a novel expert range map‐based evaluation. We build new understanding about how integrated SDMs address issues of estimation accuracy and data deficiency and thereby offer advantages over traditional SDMs.

    Location

    South and Central America.

    Time Period

    1979–2017.

    Major Taxa Studied

    Hummingbirds.

    Methods

    We build integrated SDMs by linking two observation models – one for each data type – to the same underlying spatial process. We validate SDMs with two schemes: (i) cross‐validation with presence–absence data and (ii) comparison with respect to the species' whole range as defined with IUCN range maps. We also compare models relative to the estimated response curves and compute the association between the benefit of the data integration and the number of presence records in each data set.

    Results

    The integrated SDM accounting for the spatially varying sampling intensity of the presence‐only data was one of the top performing models in both model validation schemes. Presence‐only data alleviated overly large niche estimates, and data integration was beneficial compared to modelling solely presence‐only data for species which had few presence points when predicting the species' whole range. On the community level, integrated models improved the species richness prediction.

    Main Conclusions

    Integrated SDMs combining presence‐only and presence–absence data are successfully able to borrow strengths from both data types and offer improved predictions of species' ranges. Integrated SDMs can potentially alleviate the impacts of taxonomically and geographically uneven sampling and to leverage the detailed sampling information in presence–absence data.

     
    more » « less
  3. Abstract Aim

    Species distribution models (SDMs) are widely used to make predictions on how species distributions may change as a response to climatic change. To assess the reliability of those predictions, they need to be critically validated with respect to what they are used for. While ecologists are typically interested in how and where distributions will change, we argue that SDMs have seldom been evaluated in terms of their capacity to predict such change. Instead, typical retrospective validation methods estimate model's ability to predict to only one static time in future. Here, we apply two validation methods, one that predicts and evaluates a static pattern, while the other measures change and compare their estimates of predictive performance.

    Location

    Fennoscandia.

    Methods

    We applied a joint SDM to model the distributions of 120 bird species in four model validation settings. We trained models with a dataset from 1975 to 1999 and predicted species' future occurrence and abundance in two ways: for one static time period (2013–2016, ‘static validation’) and for a change between two time periods (difference between 1996–1999 and 2013–2016, ‘change validation’). We then measured predictive performance using correlation between predicted and observed values. We also related predictive performance to species traits.

    Results

    Even though static validation method evaluated predictive performance as good, change method indicated very poor performance. Predictive performance was not strongly related to any trait.

    Main Conclusions

    Static validation method might overestimate predictive performance by not revealing the model's inability to predict change events. If species' distributions remain mostly stable, then even an unfit model can predict the near future well due to temporal autocorrelation. We urge caution when working with forecasts of changes in spatial patterns of species occupancy or abundance, even for SDMs that are based on time series datasets unless they are critically validated for forecasting such change.

     
    more » « less
  4. Abstract

    As geographic range estimates for the IUCN Red List guide conservation actions, accuracy and ecological realism are crucial. IUCN’s extent of occurrence (EOO) is the general region including the species’ range, while area of occupancy (AOO) is the subset of EOO occupied by the species. Data‐poor species with incomplete sampling present particular difficulties, but species distribution models (SDMs) can be used to predict suitable areas. Nevertheless, SDMs typically employ abiotic variables (i.e., climate) and do not explicitly account for biotic interactions that can impose range constraints. We sought to improve range estimates for data‐poor, parapatric species by masking out areas under inferred competitive exclusion. We did so for two South American spiny pocket mice:Heteromys australis(Least Concern) andHeteromys teleus(Vulnerable due to especially poor sampling), whose ranges appear restricted by competition. For both species, we estimated EOO using SDMs and AOO with four approaches: occupied grid cells, abiotic SDM prediction, and this prediction masked by approximations of the areas occupied by each species’ congener. We made the masks using support vector machines (SVMs) fit with two data types: occurrence coordinates alone; and coordinates along with SDM predictions of suitability. Given the uncertainty in calculating AOO for low‐data species, we made estimates for the lower and upper bounds for AOO, but only make recommendations forH. teleusas its full known range was considered. The SVM approaches (especially the second one) had lower classification error and made more ecologically realistic delineations of the contact zone. ForH. teleus, the lower AOO bound (a strongly biased underestimate) corresponded to Endangered (occupied grid cells), while the upper bounds (other approaches) led to Near Threatened. As we currently lack data to determine the species’ true occupancy within the post‐processed SDM prediction, we recommend that an updated listing forH. teleusinclude these bounds for AOO. This study advances methods for estimating the upper bound of AOO and highlights the need for better ways to produce unbiased estimates of lower bounds. More generally, the SVM approaches for post‐processing SDM predictions hold promise for improving range estimates for other uses in biogeography and conservation.

     
    more » « less
  5. Abstract

    Species distribution models (SDMs) that rely on regional‐scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local‐scale anthropogenic variables, including wildfire history, land‐use change, invasive species, and ecological restoration practices can override regional‐scale variables to drive patterns of species distribution. Incorporating these human‐induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentataNutt.) as a model species to explore whether including human‐induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field‐sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: −6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: −47.9%, −41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land‐use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.

     
    more » « less