Planar Josephson junctions (JJs), based on common superconductors and III–V semiconductors, are sought for Majorana states and fault-tolerant quantum computing. However, with gate-tunable spin–orbit coupling (SOC), we show that the range of potential applications of such JJs becomes much broader. The time-dependent SOC offers unexplored mechanisms for switching JJs, accompanied by the 2π-phase jumps and the voltage pulses corresponding to the single-flux-quantum transitions, key to high-speed and low-power superconducting electronics. In a constant applied magnetic field, with Rashba and Dresselhaus SOC, anharmonic current-phase relations, calculated microscopically in these JJs, yield a nonreciprocal transport and superconducting diode effect. Together with the time-dependent SOC, this allows us to identify a switching mechanism at no applied current bias, which supports fractional-flux-quantum superconducting circuits and neuromorphic computing. 
                        more » 
                        « less   
                    
                            
                            Phase Diffusion in Low-EJ Josephson Junctions at Milli-Kelvin Temperatures
                        
                    
    
            Josephson junctions (JJs) with Josephson energy EJ≲1 K are widely employed as non-linear elements in superconducting circuits for quantum computing operating at milli-Kelvin temperatures. In the qubits with small charging energy EC ( EJ/EC≫1 ), such as the transmon, the incoherent phase slips (IPS) might become the dominant source of dissipation with decreasing EJ. In this work, a systematic study of the IPS in low-EJ JJs at milli-Kelvin temperatures is reported. Strong suppression of the critical (switching) current and a very rapid growth of the zero-bias resistance due to the IPS are observed with decreasing EJ below 1 K. With further improvement of coherence of superconducting qubits, the observed IPS-induced dissipation might limit the performance of qubits based on low-EJ junctions. These results point the way to future improvements of such qubits. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1838979
- PAR ID:
- 10450292
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 12
- Issue:
- 2
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Twisted interfaces between stacked van der Waals (vdW) cuprate crystals present a platform for engineering superconducting order parameters by adjusting stacking angles. Using a cryogenic assembly technique, we construct twisted vdW Josephson junctions (JJs) at atomically sharp interfaces between Bi2Sr2CaCu2O8+xcrystals, with quality approaching the limit set by intrinsic JJs. Near 45° twist angle, we observe fractional Shapiro steps and Fraunhofer patterns, consistent with the existence of two degenerate Josephson ground states related by time-reversal symmetry (TRS). By programming the JJ current bias sequence, we controllably break TRS to place the JJ into either of the two ground states, realizing reversible Josephson diodes without external magnetic fields. Our results open a path to engineering topological devices at higher temperatures.more » « less
- 
            Ruthenium (Ru) is a promising candidate for next-generation electronic interconnects due to its low resistivity, small mean free path, and superior electromigration reliability at nanometer scales. In addition, Ru exhibits superconductivity below 1 K, with resistance to oxidation, low diffusivity, and a small superconducting gap, making it a potential material for superconducting qubits and Josephson Junctions. Here, we investigate the superconducting behavior of Ru thin films (11.9–108.5 nm thick), observing transition temperatures from 657.9 to 557 mK. A weak thickness dependence appears in the thinnest films, followed by a conventional inverse thickness dependence in thicker films. Magnetotransport studies reveal type-II superconductivity in the dirty limit (ξ ≫ l), with coherence lengths ranging from 13.5 to 27 nm. Finally, oxidation resistance studies confirm minimal RuOx growth after seven weeks of air exposure. These findings provide key insights for integrating Ru into superconducting electronic devices.more » « less
- 
            Controllable superconducting to semiconducting phase transition in topological superconductor 2M-WS2Abstract The investigation of exotic properties in two-dimensional (2D) topological superconductors has garnered increasing attention in condensed matter physics, particularly for applications in topological qubits. Despite this interest, a reliable way of fabricating topological Josephson junctions (JJs) utilizing topological superconductors has yet to be demonstrated. Controllable structural phase transition presents a unique approach to achieving topological JJs in atomically thin 2D topological superconductors. In this work, we report the pioneering demonstration of a structural phase transition from the superconducting to the semiconducting phase in the 2D topological superconductor 2M-WS2. We reveal that the metastable 2M phase of WS2remains stable in ambient conditions but transitions to the 2H phase when subjected to temperatures above 150 °C. We further locally induced the 2H phase within 2M-WS2nanolayers using laser irradiation. Notably, the 2H phase region exhibits a hexagonal shape, and scanning tunneling microscopy uncovers an atomically sharp crystal structural transition between the 2H and 2M phase regions. Moreover, the 2M to 2H phase transition can be induced at the nanometer scale by a 200 kV electron beam. The electrical transport measurements further confirmed the superconductivity of the pristine 2M-WS2and the semiconducting behavior of the laser-irradiated 2M-WS2. Our results establish a novel approach for controllable topological phase change in 2D topological superconductors, significantly impacting the development of atomically scaled planar topological JJs.more » « less
- 
            Abstract In a Josephson junction (JJ) at zero bias, Cooper pairs are transported between two superconducting contacts via the Andreev bound states (ABSs) formed in the Josephson channel. Extending JJs to multiple superconducting contacts, the ABSs in the Josephson channel can coherently hybridize Cooper pairs among different superconducting electrodes. Biasing three-terminal JJs with antisymmetric voltages, for example, results in a direct current (DC) of Cooper quartet (CQ), which involves a four-fermion entanglement. Here, we report half a flux periodicity in the interference of CQ formed in graphene based multi-terminal (MT) JJs with a magnetic flux loop. We observe that the quartet differential conductance associated with supercurrent exhibits magneto-oscillations associated with a charge of 4e, thereby presenting evidence for interference between different CQ processes. The CQ critical current shows non-monotonic bias dependent behavior, which can be modeled by transitions between Floquet-ABSs. Our experimental observation for voltage-tunable non-equilibrium CQ-ABS in flux-loop-JJs significantly extends our understanding of MT-JJs, enabling future design of topologically unique ABS spectrum.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    