skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alignment Simplified Free Space Optical Communication for Radio Spectrum Coexistence
We proposed and demonstrated an alignment simplified FSO system that enable the coexistence of radio spectrum. The FSO channel functions as a reference to cancel the interference without pre-known motion pattern of mobile receiver.  more » « less
Award ID(s):
2128608
PAR ID:
10450303
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Optics and Laser Science
Volume:
JW5A.43
Page Range / eLocation ID:
JW5A.43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iftekharuddin, Khan M.; Awwal, Abdul A.; Márquez, Andrés; Diaz-Ramirez, Victor H. (Ed.)
    One of the biggest challenges of free-space optical (FSO) communication is the wave-front aberration due to atmospheric turbulence. In FSO links the wave-front distortion manifests as a significant drop in received power, beam wander, information loss, and scintillation effects. The performance of FSO communication system is degraded significantly by the atmospheric turbulence effects. Fortunately, the adaptive optics system offers potential to mitigate the performance degradation, which is relevant for quantum communication applications as well. In our FSO experiment, we perform the transmission of 6.25 GBd QPSK signal over an FSO link without and with adaptive optics, operating at 1550nm. We emulate the atmospheric aberration in our indoor experimental setup by applying random Kolmogorov phase screens on spatial light modulators (SLMs). We demonstrate significant improvements in the power-collected, signal-to-noise-ratio (SNR), and bit-error-rate (BER) performance due to the application of adaptive optics. 
    more » « less
  2. In physical-layer security and cryptography we are concerned with the security of the transmitted data, while in low probability of intercept (LPI) communication with protecting the privacy of the end users. In our recent publications related to LPI communications and radars over free-space optical (FSO) links we proposed to hide the constant-amplitude modulated data, imposed on thermal source beam, in ambient solar radiation to protect the end users privacy and at the same time improve the reliability and security, while reducing the detectability of transmitted signal by the adversary Willie. In order to study both LPI and covert communication concepts we have developed an FSO communication testbed at the University of Arizona campus with a 1.5 km-long FSO link. Here we present results of our FSO experiments, where we conducted both LPI and covert communications at data rates ranging from 125 Mb/s to 10 Gb/s, wherein the information beam is kept completely hidden under the ambient solar radiations as random thermal noise. To improve the system reliability to atmospheric turbulence effects we make use of wavelength diversity method as a low-cost, easy to implement and far more practical alternative to conventional adaptive optics systems. 
    more » « less
  3. In this paper we are concerned with the low probability of detection (LPD) and covert radars employing optical incoherent sources. Key idea of our proposed LPD/covert radar concept is to hide the radar signal in solar radiation by employing the broadband (>30 nm) Erbium-doped fiber amplifier source, modulating such source output beam with a constant amplitude modulation format at high-speed, and detect the presence of the target by the cross-correlation method. To demonstrate the proposed concept we developed an outdoor free-space optical (FSO) testbed at the University of Arizona campus. To improve the tolerance to atmospheric turbulence effects the adaptive optics is used. We demonstrate that the LPD/covert radar concept over strong turbulent FSO channel is feasible in a desert environment. 
    more » « less
  4. Free-space optical (FSO) links are sensitive to channel fading caused by atmospheric turbulence, varying weather conditions, and changes in the distance between the transmitter and receiver. To mitigate FSO fading, this paper applies linear and quadratic prediction to estimate fading channel conditions and dynamically select the appropriate low-density parity check (LDPC) code rate. This adaptivity achieves reliable communication while efficiently utilizing the available channel mutual information. Protograph-based Raptor-like (PBRL) LDPC codes supporting a wide range of rates are designed, facilitating convenient rate switching. When channel state information (CSI) is known without delay, dynamically selecting LDPC code rate appropriately maximizes throughput. This work explores how such prediction behaves as the feedback delay is increased from no delay to a delay of 4 ms for a channel with a coherence time of 10 ms. 
    more » « less
  5. Free-space optical (FSO) links are sensitive to channel fading caused by atmospheric turbulence, varying weather conditions, and changes in the distance between the transmitter and receiver. To mitigate FSO fading, this paper applies linear and quadratic prediction to estimate fading channel conditions and dynamically select the appropriate low-density parity check (LDPC) code rate. This adaptivity achieves reliable communication while efficiently utilizing the available channel mutual information. Protograph-based Raptor-like (PBRL) LDPC codes supporting a wide range of rates are designed, facilitating convenient rate switching. When channel state information (CSI) is known without delay, dynamically selecting LDPC code rate appropriately maximizes throughput. This work explores how such prediction behaves as the feedback delay is increased from no delay to a delay of 4 ms for a channel with a coherence time of 10 ms. 
    more » « less