skip to main content

This content will become publicly available on July 24, 2024

Title: A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll “Defects” for Daytime Subambient Passive Radiative Cooling
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nano Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Roll-to-roll printing has significantly shortened the time from design to production of sensors and IoT devices, while being cost-effective for mass production. But due to less manufacturing tolerance controls available, properties such as sensor thickness, composition, roughness, etc., cannot be precisely controlled. Since these properties likely affect the sensor behavior, roll-to-roll printed sensors require validation testing before they can be deployed in the field. In this work, we improve the testing of Nitrate sensors that need to be calibrated in a solution of known Nitrate concentration for around 1–2 days. To accelerate this process, we observe the initial behavior of the sensors for a few hours, and use a physics-informed machine learning method to predict their measurements 24 hours in the future, thus saving valuable time and testing resources. Due to the variability in roll-to-roll printing, this prediction task requires models that are robust to changes in properties of the new test sensors. We show that existing methods fail at this task and describe a physics-informed machine learning method that improves the prediction robustness to different testing conditions (≈ 1.7× lower in real-world data and ≈ 5× lower in synthetic data when compared with the current state-of-the-art physics-informed machine learning method). 
    more » « less
  2. Paper-based analytical devices (PADs) offer a low-cost, user-friendly platform for rapid point-of-use testing. Without scalable fabrication methods, however, few PADs make it out of the academic laboratory and into the hands of end users. Previously, wax printing was considered an ideal PAD fabrication method, but given that wax printers are no longer commercially available, alternatives are needed. Here, we present one such alternative: the air-gap PAD. Air-gap PADs consist of hydrophilic paper test zones, separated by “air gaps” and affixed to a hydrophobic backing with double-sided adhesive. The primary appeal of this design is its compatibility with roll-to-roll equipment for large-scale manufacturing. In this study, we examine design considerations for air-gap PADs, compare the performance of wax-printed and air-gap PADs, and report on a pilot-scale roll-to-roll production run of air-gap PADs in partnership with a commercial test-strip manufacturer. Air-gap devices performed comparably to their wax-printed counterparts in Washburn flow experiments, a paper-based titration, and a 12-lane pharmaceutical screening device. Using roll-to-roll manufacturing, we produced 2700 feet of air-gap PADs for as little as $0.03 per PAD. 
    more » « less
  3. null (Ed.)