skip to main content


Title: Sulfur incorporation into NiFe oxygen evolution electrocatalysts for improved high current density operation
The efficient production of green hydrogen via electrochemical water splitting is important for improving the sustainability and enabling the electrification of the chemical industry. One of the major goals of water electrolysis is to utilize non-precious metal catalysts, which can be accomplished with alkaline electrolyzer technologies. However, there is a continuing need for designing catalysts that can operate in alkaline environments with high efficiencies under high current densities. Here we describe a simple, aqueous-based synthesis method to incorporate sulfur into NiFe-based electrocatalysts for the oxygen evolution reaction (OER). Sulfur incorporation was able to reduce the overpotential for the OER from ca. 350 mV on a NiFe catalyst to ca. 290 mV on the NiFeS catalyst at 100 mA cm −2 on a flat supporting electrode. Electrochemical impedance spectroscopy data showed a small decrease in the charge transfer resistance of the NiFeS catalysts, showing that sulfur incorporation may improve the electronic conductivity. Surface-interrogation scanning electrochemical microscopy (SI-SECM) studies combined with Tafel slope analysis suggested that the NiFeS catalyst was able to have vacant surface sites available under OER conditions and was able to maintain a Tafel slope of 39 mV dec −1 . This is in contrast to the NiFe catalyst, for which the SI-SECM studies showed a saturated surface under OER conditions with the Tafel slope transitioning from 39 mV dec −1 to 118 mV dec −1 . The low Tafel slope enabled the NiFeS catalyst to maintain low overpotentials under high current densities, which we attribute to the ability of the NiFeS catalyst to maintain vacant sites during the OER.  more » « less
Award ID(s):
1922649
NSF-PAR ID:
10450432
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials Advances
Volume:
4
Issue:
1
ISSN:
2633-5409
Page Range / eLocation ID:
122 to 133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.

     
    more » « less
  2. Abstract

    Designing cost‐efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal–air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe‐based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec−1, achieved at a current density of 10 mA cm2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.

     
    more » « less
  3. The two polymorphs of lithium cobalt oxide, LiCoO 2 , present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs. catalysis of water oxidation/oxygen evolution (OER; 2H 2 O → O 2 + 4H + + 4e − ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase – the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis conditions to show that labile Li + ions partially deintercalate from layered LiCoO 2 , initiating structural reorganization to the cubic spinel LiCo 2 O 4 , in parallel with formation of a more active catalytic phase. Comparison of cubic LiCoO 2 (50 nm) to iridium (5 nm) nanoparticles for OER catalysis (commercial benchmark for membrane-based systems) in basic and neutral electrolyte reveals excellent performance in terms of Tafel slope (48 mV dec −1 ), overpotential ( η = ∼420 mV@10 mA cm −2 at pH = 14), faradaic yield (100%) and OER stability (no loss in 14 hours). The inherent OER activity of cubic LiCoO 2 and spinel LiCo 2 O 4 is attributed to the presence of [Co 4 O 4 ] n+ cubane structural units, which provide lower oxidation potential to Co 4+ and lower inter-cubane hole mobility. By contrast, the layered phase, which lacks cubane units, exhibits extensive intra-planar hole delocalization which entropically hinders the four electron/hole concerted OER reaction. An essential distinguishing trait of a truly relevant catalyst is efficient continuous operation in a real electrolyzer stack. Initial trials of cubic LiCoO 2 in a solid electrolyte alkaline membrane electrolyzer indicate continuous operation for 1000 hours (without failure) at current densities up to 400 mA cm −2 and overpotential lower than proven PGM (platinum group metal) catalysts. 
    more » « less
  4. Developing simple, affordable, and environmentally friendly water oxidation electrocatalysts with high intrinsic activity and low overpotential continues to be an area of intense research. In this article, a trichromium diselenide carbonyl cluster complex (Et4N)2[Se2Cr3(CO)10], with a unique bonding structure comprising bridging Se groups, has been identified as a promising electrocatalyst for oxygen evolution reaction (OER). This carbonyl cluster exhibits a promising overpotential of 310 mV and a low Tafel slope of 82.0 mV dec−1 at 10 mAcm−2, with superior durability in an alkaline medium, for a prolonged period of continuous oxygen evolution. The mass activity and turnover frequency of 62.2 Ag−1 and 0.0174 s−1 was achieved, respectively at 0.390 V vs. RHE. The Cr-complex reported here shows distinctly different catalytic activity based on subtle changes in the ligand chemistry around the catalytically active Cr site. Such dependence further corroborates the critical influence of ligand coordination on the electron density distribution which further affects the electrochemical activation and catalytic efficiency of the active site. Specifically, even partial substitution with more electronegative substituents leads to the weakening of the catalytic efficiency. This report further demonstrates that metal carbonyl chalcogenides cluster-type materials which exhibit partially occupied sites and high valence in their metal sites can serve as catalytically active centers to catalyze OER exhibiting high intrinsic activity. The insight generated from this report can be directly extrapolated to 3-dimensional solids containing similar structural motifs, thereby aiding in optimal catalyst design. 
    more » « less
  5. Abstract

    Oxygen evolution reaction (OER) is of great significance for hydrogen production via water electrolysis, which, however, demands development of highly active, durable, and cost‐effective electrocatalysts in order to stride into a renewable energy era. Herein, highly efficient and long‐term durable OER by coupling B and P into an amorphous porous NiFe‐based electrocatalyst is reported, which possesses an amorphous porous metallic bulk structure and high corrosion resistance, and overcomes the issues associated with currently used catalyst nanomaterials. The PB codoping in the activated NiFePB (a‐NiFePB) delocalizes both Fe and Ni at Fermi energy level and enhances p–d hybridization as simulated by density functional theory calculations. The harmonized electronic structure and unique porous framework of the a‐NiFePB consequently improve the OER activity. The activated NiFePB thus exhibits an extraordinarily low overpotential of 197 mV for harvesting 10 mA cm−2OER current density and 233 mV for reaching 100 mA cm−2under chronopotentiometry condition, with the Tafel slope harmoniously conforming to 34 mV dec−1. Impressive long‐term stability of this new catalyst is evidenced by only limited activity decay after 1400 h operation at 100 mA cm−2. This work strategically directs a way for heading up a promising energy conversion alternative.

     
    more » « less