skip to main content


This content will become publicly available on December 1, 2024

Title: Regulation of molecular transport in polymer membranes with voltage-controlled pore size at the angstrom scale
Abstract Polymer membranes have been used extensively for Angstrom-scale separation of solutes and molecules. However, the pore size of most polymer membranes has been considered an intrinsic membrane property that cannot be adjusted in operation by applied stimuli. In this work, we show that the pore size of an electrically conductive polyamide membrane can be modulated by an applied voltage in the presence of electrolyte via a mechanism called electrically induced osmotic swelling. Under applied voltage, the highly charged polyamide layer concentrates counter ions in the polymer network via Donnan equilibrium and creates a sizeable osmotic pressure to enlarge the free volume and the effective pore size. The relation between membrane potential and pore size can be quantitatively described using the extended Flory-Rehner theory with Donnan equilibrium. The ability to regulate pore size via applied voltage enables operando modulation of precise molecular separation in-situ. This study demonstrates the amazing capability of electro-regulation of membrane pore size at the Angstrom scale and unveils an important but previously overlooked mechanism of membrane-water-solute interactions.  more » « less
Award ID(s):
2017998
NSF-PAR ID:
10450448
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Separating molecules or ions with sub-Angstrom scale precision is important but technically challenging. Achieving such a precise separation using membranes requires Angstrom scale pores with a high level of pore size uniformity. Herein, we demonstrate that precise solute-solute separation can be achieved using polyamide membranes formed via surfactant-assembly regulated interfacial polymerization (SARIP). The dynamic, self-assembled network of surfactants facilitates faster and more homogeneous diffusion of amine monomers across the water/hexane interface during interfacial polymerization, thereby forming a polyamide active layer with more uniform sub-nanometre pores compared to those formed via conventional interfacial polymerization. The polyamide membrane formed by SARIP exhibits highly size-dependent sieving of solutes, yielding a step-wise transition from low rejection to near-perfect rejection over a solute size range smaller than half Angstrom. SARIP represents an approach for the scalable fabrication of ultra-selective membranes with uniform nanopores for precise separation of ions and small solutes.

     
    more » « less
  2. In membrane-based separation, molecular size differences relative to membrane pore sizes govern mass flux and separation efficiency. In applications requiring complex molecular differentiation, such as in natural gas processing, cascaded pore size distributions in membranes allow different permeate molecules to be separated without a reduction in throughput. Here, we report the decoration of microporous polymer membrane surfaces with molecular fluorine. Molecular fluorine penetrates through the microporous interface and reacts with rigid polymeric backbones, resulting in membrane micropores with multimodal pore size distributions. The fluorine acts as angstrom-scale apertures that can be controlled for molecular transport. We achieved a highly effective gas separation performance in several industrially relevant hollow-fibrous modular platform with stable responses over 1 year. 
    more » « less
  3. Abstract

    There is a need for developing reliable models for water and solute transport in graphene oxide (GO) membranes for advancing their emerging industrial water processing applications. In this direction, we develop predictive transport models for GO and reduced‐GO (rGO) membranes over a wide solute concentration range (0.01–0.5 M) and compositions, based on the extended Nernst–Planck transport equations, Donnan equilibrium condition, and solute adsorption models. Some model parameters are obtained by fitting experimental permeation data for water and unary (single‐component) aqueous solutions. The model is validated by predicting experimental permeation behavior in binary solutions, which display very different characteristics. Sensitivity analysis of salt rejections as a function of membrane design parameters (pore size and membrane charge density) allows us to infer design targets to achieve high salt rejections. Such models will be useful in accelerating structure‐separation property relationships of GO membranes and for separation process design and optimization.

     
    more » « less
  4. Porous polymer-derived membranes are useful for applications ranging from filtration and separation technologies to energy storage and conversion. Combining block copolymer (BCP) self-assembly with the industrially scalable, non-equilibrium phase inversion technique (SNIPS) yields membranes comprising periodically ordered top surface structures supported by asymmetric, hierarchical substructures that together overcome performance tradeoffs typically faced by materials derived from equilibrium approaches. This review first reports on recent advances in understanding the top surface structural evolution of a model SNIPS-derived system during standard membrane formation. Subsequently, the application of SNIPS to multicomponent systems is described, enabling pore size modulation, chemical modification, and transformation to non-polymeric materials classes without compromising the structural features that define SNIPS membranes. Perspectives on future directions of both single-component and multicomponent membrane materials are provided. This points to a rich and fertile ground for the study of fundamental as well as applied problems using non-equilibrium-derived asymmetric porous materials with tunable chemistry, composition, and structure. 
    more » « less
  5. Abstract

    Considering growing efforts to understand and improve the solute-specific selectivity of nanofiltration (NF) membranes, we explored the ion-specific effects that govern the charge and performance of a loose polyamide NF membrane that is commonly used for solute-solute separations. Specifically, we systematically evaluated the zeta potential of the membrane under different conditions of pH, salinity, and ionic composition, and correlated the obtained data with membrane performance tested under similar conditions. Our results identify the pKaof both carboxylic and amine groups bonded to the membrane surface and suggest that the highly polarizable chloride anions in the solution adsorb to the polyamide, increasing its negative charge. We also show that monovalent cations of different “stickiness” can neutralize the negative membrane charge to different extents due to their varying tendency to sorb to the polymer matrix or screen the fixed carboxyl groups on the membrane surface. Notably, our correlation between zeta potential measurements and permeability experiments indicates the substantial contribution of solution ions to Donnan exclusion in NF membranes.

     
    more » « less