skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anthropogenic Impacts on Atmospheric Carbonyl Sulfide Since the 19th Century Inferred From Polar Firn Air and Ice Core Measurements
Abstract Carbonyl sulfide (COS) was measured in firn air collected during seven different field campaigns carried out at four different sites in Greenland and Antarctica between 2001 and 2015. A Bayesian probabilistic statistical model is used to conduct multisite inversions and to reconstruct separate atmospheric histories for Greenland and Antarctica. The firn air inversions cover most of the 20th century over Greenland and extend back to the 19th century over Antarctica. The derived atmospheric histories are consistent with independent surface air time series data from the corresponding sites and the Antarctic ice core COS records during periods of overlap. Atmospheric COS levels began to increase over preindustrial levels starting in the 19th century, and the increase continued for much of the 20th century. Atmospheric COS peaked at higher than present‐day levels around 1975 CE over Greenland and around 1987 CE over Antarctica. An atmosphere/surface ocean box model is used to investigate the possible causes of observed variability. The results suggest that changes in the magnitude and location of anthropogenic sources have had a strong influence on the observed atmospheric COS variability.  more » « less
Award ID(s):
1839506
PAR ID:
10450675
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
16
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The atmospheric history of molecular hydrogen (H 2 ) from 1852 to 2003 was reconstructed from measurements of firn air collected at Megadunes, Antarctica. The reconstruction shows that H 2 levels in the southern hemisphere were roughly constant near 330 parts per billion (ppb; nmol H 2 mol −1 air) during the mid to late 1800s. Over the twentieth century, H 2 levels rose by about 70% to 550 ppb. The reconstruction shows good agreement with the H 2 atmospheric history based on firn air measurements from the South Pole. The broad trends in atmospheric H 2 over the twentieth century can be explained by increased methane oxidation and anthropogenic emissions. The H 2 rise shows no evidence of deceleration during the last quarter of the twentieth century despite an expected reduction in automotive emissions following more stringent regulations. During the late twentieth century, atmospheric CO levels decreased due to a reduction in automotive emissions. It is surprising that atmospheric H 2 did not respond similarly as automotive exhaust is thought to be the dominant source of anthropogenic H 2. The monotonic late twentieth century rise in H 2 levels is consistent with late twentieth-century flask air measurements from high southern latitudes. An additional unknown source of H 2 is needed to explain twentieth-century trends in atmospheric H 2 and to resolve the discrepancy between bottom-up and top-down estimates of the anthropogenic source term. The firn air–based atmospheric history of H 2 provides a baseline from which to assess human impact on the H 2 cycle over the last 150 y and validate models that will be used to project future trends in atmospheric composition as H 2 becomes a more common energy source. 
    more » « less
  2. Ice core measurements reveal dipole-like snow accumulation trends over West Antarctica throughout the 20th century, with an increase of >2000 billion metric tons over the Antarctic Peninsula and Ellsworth Land but a decrease of ~500 billion metric tons over Marie Byrd Land. Although atmospheric teleconnections were frequently revealed, linking variability between tropics and higher latitudes on interannual and decadal timescales, centennial-scale teleconnection is absent from literature. Here, using statistical analysis and numerical experiments, we reveal that changes of tropical oceans throughout the 20th century drive the long-term Antarctic snowfall trend. A pronounced warming over the tropical Atlantic and a moderate cooling over the equatorial Pacific have driven an adjustment of moisture transport and thus snowfall pattern in West Antarctica. Our study reveals a centennial tropical-polar teleconnection, producing long-term trends with opposing changes across the regions. Remote forcing from the tropics increased the mass accumulation over Antarctica, balanced rapid iceshelf thinning in recent decades, contributing to global sea-level changes. 
    more » « less
  3. Abstract Molecular hydrogen (H2) is an abundant and reactive constituent of Earth's atmosphere, with links to climate and air quality. Anthropogenic emissions of H2are expected to rise as the use of H2as an energy source increases. Documenting past variations in atmospheric H2will help to validate current understanding of the global H2budget. The modern instrumental record begins in the 1980s; there is little information about atmospheric H2prior to that time. Here, we use firn air measurements from a 2001 South Pole campaign to reconstruct atmospheric H2levels over the 20th century. Inversion of the measurements indicates that H2over South Pole has increased from 350–540 ppb from 1910–2000. A biogeochemical box model indicates that the atmospheric burden of H2increased by 37% over that time. The rise in H2is consistent with increasing H2emissions from fossil fuel combustion and increasing atmospheric production from methane oxidation. 
    more » « less
  4. Abstract Droughts over the last century in Southwestern North America (SWNA) have had severe consequences for people and ecosystems across the region, most recently during the early 21st‐century megadrought (2000–2022). The 20thcentury, however, was bracketed by two extended pluvials that also had significant impacts in the region. We use a 1,224 years (800–2023 CE) record of observed and reconstructed soil moisture, in concert with a paleoclimate reanalysis product, to place the 20th‐century pluvials in a longer‐term context and investigate the occurrence and dynamics of similar events in the Common Era. Analyses of the soil moisture reconstruction demonstrate that pluvials and megapluvials are as ubiquitous as droughts and megadroughts over the last millennium. The early (19 years; 1905–1923) and late (22 years; 1978–1999) 20th‐century pluvials rank as the second and first wettest in the record, respectively, positioning these as events on par with the most extreme megadroughts. Pluvials show a strong association with tropical Pacific (warm) sea surface temperatures (SSTs) during the 20thcentury and over the prior millennium, though the role of the tropical Atlantic is much more uncertain and ambiguous. Using a Bayesian hierarchical modeling approach trained on the pre‐industrial period (800–1849 CE), we find that the record setting late 20th‐century megapluvial likely occurred as a consequence of anomalously strong Pacific sea surface temperature forcing. This work establishes pluvial and megapluvial events as intrinsic components of Common Era hydroclimate variability in SWNA, comparable in importance to droughts and megadroughts. 
    more » « less
  5. South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions. 
    more » « less