Abstract Anthropogenic activities add more reactive nitrogen (N) to the environment than all natural sources combined, and the fate of this N is of environmental concern. If N that is deposited on terrestrial ecosystems through atmospheric deposition is retained in plant tissues or soil organic matter, it could stimulate carbon (C) storage in plant biomass or soils. However, added N also could increase soil inorganic N concentrations and leaching, potentially polluting watersheds, particularly in areas with low-N soils and/or a high propensity for leaching, such as sandy or arid areas. Here, we assessed N allocation and retention across a 13-year experimental N addition gradient in a temperate grassland. We found that N accumulation decreased significantly at mid- to high levels of N addition compared to the Control, such that ecosystem N pools were equivalent across a 10 g m−2 year−1range of annual N addition rates (0–10 g N m−2 year−1), which spans most of the global range of N deposition. Nitrogen addition increased plant tissue percent N, but the total pool of N did not increase because of reduced plant biomass, particularly in roots. Nitrogen addition also increased soil inorganic N concentrations. Our results indicate that N addition is unlikely to increase grassland N pools, particularly in sandy or low-fertility ecosystems with a high potential for leaching because high application rates lead to N saturation, and additional inputs are lost.
more »
« less
Community change can buffer chronic nitrogen impacts, but multiple nutrients tip the scale
Abstract Anthropogenic nitrogen (N) inputs are causing large changes in ecosystems worldwide. Many previous studies have examined the impact of N on terrestrial ecosystems; however, most have added N at rates that are much higher than predicted future deposition rates. Here, we present the results from a gradient of experimental N addition (0–10 g·N·m−2) in a temperate grassland. After a decade of N addition, we found that all levels of N addition changed plant functional group composition, likely indicating altered function for plant communities exposed to 10 yr of N inputs. However, N addition only had weak impacts on species composition and this functional group shift was not driven by any particular species, suggesting high levels of functional redundancy among grasslands species. Adding other nutrients (P, K, and micronutrients) in combination with N caused substantially greater changes in the relative abundance of species and functional groups. Together, these results suggest that compositional change within functional groups may buffer grasslands from impacts of N deposition, but concurrent eutrophication with other elements will likely lead to substantial changes in plant composition and biomass.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10450757
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 102
- Issue:
- 6
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Increasing warming and drought severity are projected for the Pacific Northwest (PNW) and are expected to negatively impact species composition and ecosystem function. In this study, we test the hypothesis that the impact of climatic stress (i.e., experimental warming and drought) on PNW grasslands are mediated by interactions between plant functional diversity and soil biogeochemical processes, including symbiotic nitrogen (N) fixation in legumes and free‐living asymbiotic nitrogen fixation (ANF) by soil microorganisms. To test this hypothesis, we measured the response of plants and soils to three years of warming (+2.5°C) and drought (−40% precipitation) in field experiments replicated at three different sites across a ∼520‐km latitudinal gradient. We observed interactive effects of warming and drought on functional diversity and soil biogeochemical properties, including both positive and negative changes in ANF. Although direct measurements of symbiotic nitrogen fixation (SNF) rates were not conducted, the observed variations in ANF, in conjunction with changes in legume cover, suggest a compensatory mechanism that may offset reductions in SNF. Generally, high ANF rates coincided with low legume cover, suggesting a connection between shifts in species composition and N cycling. Our ANF estimates were performed using isotopically labeled dinitrogen (15N2) in tandem with soil carbon (C), phosphorus (P) and iron (Fe), pH, and moisture content. Along the latitudinal drought severity gradient, ANF rates were correlated with changes in species composition and soil N, P, moisture, and pH levels. These results highlight the importance of soil‐plant‐atmosphere interactions in understanding the impacts of climatic stress on ecosystem composition and function.more » « less
-
Abstract Plant damage by invertebrate herbivores and pathogens influences the dynamics of grassland ecosystems, but anthropogenic changes in nitrogen and phosphorus availability can modify these relationships.Using a globally distributed experiment, we describe leaf damage on 153 plant taxa from 27 grasslands worldwide, under ambient conditions and with experimentally elevated nitrogen and phosphorus.Invertebrate damage significantly increased with nitrogen addition, especially in grasses and non‐leguminous forbs. Pathogen damage increased with nitrogen in grasses and legumes but not forbs. Effects of phosphorus were generally weaker. Damage was higher in grasslands with more precipitation, but climatic conditions did not change effects of nutrients on leaf damage. On average, invertebrate damage was relatively higher on legumes and pathogen damage was relatively higher on grasses. Community‐weighted mean damage reflected these functional group patterns, with no effects of N on community‐weighted pathogen damage (due to opposing responses of grasses and forbs) but stronger effects of N on community‐weighted invertebrate damage (due to consistent responses of grasses and forbs).Synthesis. As human‐induced inputs of nitrogen and phosphorus continue to increase, understanding their impacts on invertebrate and pathogen damage becomes increasingly important. Our results demonstrate that eutrophication frequently increases plant damage and that damage increases with precipitation across a wide array of grasslands. Invertebrate and pathogen damage in grasslands is likely to increase in the future, with potential consequences for plant, invertebrate and pathogen communities, as well as the transfer of energy and nutrients across trophic levels.more » « less
-
Abstract Nutrient exchange forms the basis of the ancient symbiotic relationship that occurs between most land plants and arbuscular mycorrhizal (AM) fungi. Plants provide carbon (C) to AM fungi and fungi provide the plant with nutrients such as nitrogen (N) and phosphorous (P). Nutrient addition can alter this symbiotic coupling in key ways, such as reducing AM fungal root colonization and changing the AM fungal community composition. However, environmental parameters that differentiate ecosystems and drive plant distribution patterns (e.g., pH, moisture), are also known to impact AM fungal communities. Identifying the relative contribution of environmental factors impacting AM fungal distribution patterns is important for predicting biogeochemical cycling patterns and plant‐microbe relationships across ecosystems. To evaluate the relative impacts of local environmental conditions and long‐term nutrient addition on AM fungal abundance and composition across grasslands, we studied experimental plots amended for 10 years with N, P, or N and P fertilizer in different grassland ecosystem types, including tallgrass prairie, montane, shortgrass prairie, and desert grasslands. Contrary to our hypothesis, we found ecosystem type, not nutrient treatment, was the main driver of AM fungal root colonization, diversity, and community composition, even when accounting for site‐specific nutrient limitations. We identified several important environmental drivers of grassland ecosystem AM fungal distribution patterns, including aridity, mean annual temperature, root moisture, and soil pH. This work provides empirical evidence for niche partitioning strategies of AM fungal functional guilds and emphasizes the importance of long‐term, large scale research projects to provide ecologically relevant context to nutrient addition studies.more » « less
-
Abstract Anthropogenic environmental changes are known to affect the Earth's ecosystems. However, how these changes influence assembly trajectories of the impacted communities remains a largely open question.In this study, we investigated the effect of elevated nitrogen (N) deposition and increased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China.We found that both N and water addition significantly increased taxonomic β‐diversity, whereas N, not water, addition significantly increased phylogenetic β‐diversity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic convergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait.Synthesis.Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure.more » « less
An official website of the United States government
