skip to main content


Title: Assessing spatial patterns of soil erosion in a high‐latitude rangeland
Abstract

High‐latitude areas are experiencing rapid change: we therefore need a better understanding of the processes controlling soil erosion in these environments. We used a spatiotemporal approach to investigate soil erosion in Svalbarðstunga, Iceland (66°N, 15°W), a degraded rangeland. We used three complementary datasets: (a) high‐resolution unmanned‐aerial vehicle imagery collected from 12 sites (total area ~0.75 km2); (b) historical imagery of the same sites; and (c) a simple, spatially‐explicit cellular automata model. Sites were located along a gradient of increasing altitude and distance from the sea, and varied in erosion severity (5–47% eroded). We found that there was no simple relationship between location along the environmental gradient and the spatial characteristics of erosion. Patch‐size frequency distributions lacked a characteristic scale of variation, but followed a power‐law distribution on five of the 12 sites. Present total eroded area is poorly related to current, site‐scale levels of environmental stress, but the number of small erosion patches did reflect site‐level stress. Small (<25 m2) erosion patches clustered near large patches. The model results suggested that the large‐scale patterns observed likely arise from strong, local interactions, which mean that erosion spreads from degraded areas. Our findings suggest that contemporary erosion patterns reflect historical stresses, as well as current environmental conditions. The importance of abiotic processes to the growth of large erosion patches and their relative insensitivity to current environmental conditions makes it likely that the total eroded area will continue to increase, despite a warming climate and reducing levels of grazing pressure.

 
more » « less
NSF-PAR ID:
10450771
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Land Degradation & Development
Volume:
31
Issue:
15
ISSN:
1085-3278
Page Range / eLocation ID:
p. 2003-2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sea level rise (SLR) is threatening coastal marshes, leading to large‐scale marsh loss in several micro‐tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long‐term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high‐precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro‐tidal system (Blackwater River, Maryland, USA), where large‐scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short‐term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long‐term stability of micro‐tidal marshes. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  2. Cycling of carbon (C), nitrogen (N), calcium (Ca), phosphorus (P), and sulfur (S) is an important ecosystem service that forest soils provide. Humans influence these biogeochemical processes through the deposition of atmospheric pollutants and site disturbances. One way to study these potential anthropogenic trajectories is through long-term monitoring in association with human-caused environmental gradients such as urban-rural gradients. The objective of this study was to characterize changes in surface soil chemistry of urban, suburban and rural forest patches in the Baltimore Metropolitan area. Soil composite samples (0–10 cm) were analyzed for macro- and micronutrients, pH, and C. A total of 12 sites in forest patches dominated by white oak ( Quercus alba ) and tulip poplar ( Liriodendron tulipifera ) were established in 2001, and resampled in 2018. We hypothesized that after almost two decades (1) concentrations of N, Ca, and P, as well as soil pH would be higher, especially in urban forest patches due to local deposition; (2) S levels would be lower due to decreased regional atmospheric deposition and; (3) total soil C would increase overall, but the rate of increase would be higher in the urban end of the gradient due to increased NPP. Overall, means of Ca concentration, pH, and C:N ratios significantly changed from 2001 to 2018. Calcium increased by 35% from 622 to 844 mg kg –1 , pH increased from 4.1 to 4.5, and C:N ratios decreased from 17.8 to 16.7. Along the gradient, Ca, N, P, and S were statistically significant with Ca concentration higher in the urban sites; S and N higher in the suburban sites; and P lower in the urban sites. Confounding factors, such as different geologic parent material may have affected these results. However, despite the unique site conditions, patterns of surface soil chemistry in space and time implies that local and regional factors jointly affect soil development in these forest patches. The increase in pH and Ca is especially notable because other long-term studies demonstrated changes in the opposite direction. 
    more » « less
  3. Abstract

    Pyrogenic carbon (PyC) is an incomplete combustion by‐product with longer soil residence times compared with nonpyrogenic components of the soil carbon (C) pool and can be preferentially eroded in fire‐affected landscapes. To investigate geomorphic and fire‐related controls on PyC erosion, sediment fences were established in three combinations of slope (high 13.9–37.3%; moderate 0–6.7%) and burn severity (high; moderate) plots within the perimeter of the Rim Fire in 2013, Yosemite National Park, California, USA. After each major precipitation event following the fire, we determined transport rates of total sediment, fine and coarse sediment fractions, and C and nitrogen (N). We measured stable isotope (δ13C and δ15N) compositions and13C‐nuclear magnetic resonance spectra of soils and eroded sediments. The highest total and fine (<2 mm) sediment transport in high severity burned areas correlated with initial discharge peaks from an adjacent stream, while moderate burn severity sites had considerably more of the >2 mm fraction transported than high burn severity sites. The δ13C and δ15N values and13C‐nuclear magnetic resonance analyses indicated that sediment eroded from moderate severity burn areas included fresh organic matter that was not as significantly affected by the fire, whereas sediments from high severity burn areas were preferentially enriched in PyC. Our results indicate that along a single hillslope after the Rim Fire, burn severity acted as a primary control on PyC transport postfire, with slope angle likely playing a secondary role. The preferential erosion of PyC has major implications for the long‐term persistence of PyC within the soil system.

     
    more » « less
  4. Coral bleaching and mortality can show significant spatial and taxonomic heterogeneity at local scales, highlighting the need to understand the fine-scale drivers and impacts of thermal stress. In this study, we used structure-from-motion photogrammetry to track coral bleaching, mortality, and changes in community composition during the 2019 marine heatwave in Kāneʻohe Bay, Hawaiʻi. We surveyed 30 shallow reef patches every 3 weeks for the duration of the bleaching event (August-December) and one year after, resulting in a total of 210 large-area, high-resolution photomosaics that enabled us to follow the fate of thousands of coral colonies through time. We also measured environmental variables such as temperature, sedimentation, depth, and wave velocity at each of these sites, and extracted estimates of habitat complexity (rugosity R and fractal dimension D) from digital elevation models to better understand their effects on patterns of bleaching and mortality. We found that up to 80% of corals experienced moderate to severe bleaching in this period, with peak bleaching occurring in October when heat stress (Degree Heating Weeks) reached its maximum. Mortality continued to accumulate as bleaching levels dropped, driving large declines in more heat-susceptible species (77% loss of Pocillopora cover) and moderate declines in heat-tolerant species (19% and 23% for Porites compressa and Montipora capitata , respectively). Declines in live coral were accompanied by a rapid increase in algal cover across the survey sites. Spatial differences in bleaching were significantly linked to habitat complexity and coral species composition, with reefs that were dominated by Pocillopora experiencing the most severe bleaching. Mortality was also influenced by species composition, fractal dimension, and site-level differences in thermal stress. Our results show that spatial heterogeneity in the impacts of bleaching are driven by a mix of environmental variation, habitat complexity, and differences in assemblage composition. 
    more » « less
  5. Abstract

    Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3) concentrations (mg/L), and N flux, both NO3and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002–2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008–2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3concentrations with Clconcentrations and specific conductance in both ground and surface waters suggested that NO3reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

     
    more » « less