skip to main content


Title: Observational evidence of herbivore‐specific associational effects between neighboring conspecifics in natural, dimorphic populations of Datura wrightii
Abstract

Associational effects—in which the vulnerability of a plant to herbivores is influenced by its neighbors—have been widely implicated in mediating plant–herbivore interactions. Studies of associational effects typically focus on interspecific interactions or pest–crop dynamics. However, associational effects may also be important for species with intraspecific variation in defensive traits. In this study, we observed hundreds ofDatura wrightii—which exhibits dimorphism in its trichome phenotype—from over 30 dimorphic populations across California. Our aim was to determine whether a relationship existed between the trichome phenotype of neighboring conspecifics and the likelihood of being damaged by four species of herbivorous insects. We visited plants at three timepoints to assess how these effects vary both within and between growing seasons. We hypothesized that the pattern of associational effects would provide rare morphs (i.e., focal plants that are a different morph than their neighbors) with an advantage in the form of reduced herbivory, thereby contributing to the negative frequency‐dependent selection previously documented in this system. We found the best predictor of herbivory/herbivore presence on focal plants was the phenotype of the focal plant. However, we also found some important neighborhood effects. The total number of plants near a focal individual predicted the likelihood and/or magnitude of herbivory byTupiochoris notatus,Lema daturaphila, andManduca sexta. We also found that velvety focal plants with primarily sticky neighbors are more susceptible to infestation byTupiochoris notatusandLema daturaphila. This does not align with the hypothesis that associational effects at the near‐neighbor scale contribute to a rare‐morph advantage in this system. Overall, the results of our study show that the number and trichome‐morph composition of neighboring conspecifics impact interactions betweenD. wrightiiand insect herbivores.

 
more » « less
NSF-PAR ID:
10450788
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
10
ISSN:
2045-7758
Page Range / eLocation ID:
p. 5547-5561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant–insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross‐bred plants of theSolanum pennelliiintrogression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within‐chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility—flying versus crawling—played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.

     
    more » « less
  2. Abstract

    Consumer‐resource interactions are often influenced by other species in the community, such as when neighbouring plants increase or reduce herbivory to a focal plant species (known as associational effects). The many studies on associational effects between a focal plant and some neighbour have shown that these effects can vary greatly in strength and direction. But because almost all of these studies measure associational effects from only one or two neighbour species, we know little about the actual range of associational effects that a plant species might encounter in a natural setting. This makes it difficult to determine how important effects of neighbours are in real field settings, and how associational effects might interact with competition and other processes to influence plant community composition.

    In this study, we used a field experiment with a focal species,Solanum carolinense, and 11 common neighbour species to investigate how associational effects vary among many co‐occurring neighbour species and to test whether factors such as neighbour plant apparency, phylogenetic proximity to the focal species, or effects on focal plant defence traits help to explain interspecific variation in associational effect strength.

    We found that some neighbour species affectedS. carolinensedamage and attack by specialist herbivores, but associational effects of most neighbours were weak. Associational effects increased herbivore attack on average earlier in the season (associational susceptibility) and reduced herbivore attack on average later in the season (associational resistance) relative toS. carolinensein monoculture.

    We found some evidence that a neighbour's associational effect was related to its biomass and phylogenetic proximity to the focal species. While neighbour species differed in their effects on physical leaf traits of focal plants (trichome density, specific leaf area, and leaf toughness), these traits did not appear to mediate the effects of neighbours on focal plant herbivory.

    Synthesis. Our results suggest that the distribution of associational effect strengths in natural communities are similar to those observed for other interaction types, and that multiple mechanisms are likely acting simultaneously to shape associational effects of different neighbour species.

     
    more » « less
  3. Abstract

    Negative frequency-dependent selection (NFDS) has been shown to maintain polymorphism in a diverse array of traits. The action of NFDS has been confirmed through modeling, experimental approaches, and genetic analyses. In this study, we investigated NFDS in the wild using morph-frequency changes spanning a 20-year period from over 30 dimorphic populations of Datura wrightii. In these populations, plants either possess glandular (sticky) or non-glandular (velvety) trichomes, and the ratio of these morphs varies substantially among populations. Our method provided evidence that NFDS, rather than drift or migration, is the primary force maintaining this dimorphism. Most populations that were initially dimorphic remained dimorphic, and the overall mean and variance in morph frequency did not change over time. Furthermore, morph-frequency differences were not related to geographic distances. Together, these results indicate that neither directional selection, drift, or migration played a substantial role in determining morph frequencies. However, as predicted by negative frequency-dependent selection, we found that the rare morph tended to increase in frequency, leading to a negative relationship between the change in the frequency of the sticky morph and its initial frequency. In addition, we found that morph-frequency change over time was significantly correlated with the damage inflicted by two herbivores: Lema daturaphila and Tupiochoris notatus. The latter is a specialist on the sticky morph and damage by this herbivore was greatest when the sticky morph was common. The reverse was true for L. daturaphila, such that damage increased with the frequency of the velvety morph. These findings suggest that these herbivores contribute to balancing selection on the observed trichome dimorphism.

     
    more » « less
  4. Abstract

    At small spatial scales, attraction or deterrence of herbivores by plant neighbors can alter the susceptibility of plants to damage (i.e., associational effects). Given the patchy nature of plants and insect herbivory, we hypothesized that induced resistance may play an important role in mitigating such spatial variability. To test this notion, we first documented neighbor effects between two closely related and co‐occurring plant species in natural populations, and second, we measured how these effects changed after inducing plant resistance in a common garden. In wet fields and marshes of Northeastern North America, boneset (Eupatorium perfoliatum) is the primary host for the herbivorous beetleOphraella notata. Across two years of surveys at multiple sites, we found that Joe Pye weed (Eutrochium maculatum) was a secondary host toO. notataand was more likely to receive beetle eggs when it grew near boneset, constituting a negative neighbor effect (associational susceptibility) for Joe Pye weed. Reciprocally, there were trends of reduced susceptibility for boneset when it grew near Joe Pye weed (a positive neighbor effect), but this pattern was less consistent over space and time. In the common garden, we manipulated patches, each with a center (focal) and surrounding (neighbor) plants, with focal plants of each species either induced by the plant hormone jasmonic acid or left as controls. While neighbor effects prior to induction mirrored the pattern in surveys, induction was most effective in reducing beetle oviposition on focal plants in heterospecific groups. This effectively eliminated negative neighbor effects (susceptibility) for Joe Pye weed, the less preferred plant species. However, in conspecific patches, induction had minimal effect on either species' susceptibility to beetles. Given the importance of spatial variation generally and the ubiquity of neighbor effects in plant communities, we suggest that inducible resistance may be an important mechanism to cope with spatial heterogeneity in susceptibility to herbivores.

     
    more » « less
  5. 1. Predicting how ecological interactions will respond to global change is a major challenge. Plants and their associated insect herbivores compose much of macroscopic diversity, yet how their interactions have been altered by recent environmental change remains underexplored. 2. To address this gap, we quantified herbivory on herbarium specimens of four plant species with records extending back 112 years. Our study focused on the northeastern US, where temperatures have increased rapidly over the last few decades. This region also represents a range of urban development, a form of global change that has shown variable effects on herbivores in the past studies. 3. Herbarium specimens collected in the early 2000s were 23% more likely to be damaged by herbivores than those collected in the early 1900s. Herbivory was greater following warmer winters and at low latitudes, suggesting that climate warming may drive increasing insect damage over time. In contrast, human population densities were negatively associated with herbivore damage. 4. To explore whether changes in insect occurrence or abundance might explain shifts in herbivory, we used insect observational records to build climate occupancy models for lepidopteran herbivores (butterflies and moths) of our focal plant species. 5. These models show that higher winter temperatures were associated with higher probability of insect herbivore presence, while urbanization was associated with reduced probability of herbivore presence, supporting a link between insect herbivore occurrence and herbivory mediated through environment. 6. Synthesis. Using a temporal record of plant herbivory that spans over a century, we show that both temperature and urbanization influence insect damage to plants, but in very different ways. Our results indicate that damage to plants by insect herbivores will likely continue to increase through time in the northeastern US as global temperatures rise, but that urbanization may disrupt local effects of winter warming on herbivory by excluding certain herbivores. These changes may scale to shape ecosystem processes that are driven by herbivory, including plant productivity. 
    more » « less