skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing the Role of Water in Alaskan Flat‐Slab Subduction
Abstract Low‐angle subduction has been shown to have a profound impact on subduction processes. However, the mechanisms that initiate, drive, and sustain flat‐slab subduction are debated. Within all subduction zone systems, metamorphic dehydration reactions within the down‐going slab have been hypothesized to produce seismicity, and to produce water that fluxes melting of the asthenospheric wedge leading to arc magmatism. In this work, we examine the role hydration plays in influencing slab buoyancy and the geometry of the downgoing oceanic plate. When water is introduced to the oceanic lithosphere, it is incorporated into hydrous phases, which results in lowered rock densities. The net effect of this process is an increase in the buoyancy of the downgoing oceanic lithosphere. To better understand the role of water in low‐angle subduction settings, we model flat‐slab subduction in Alaska, where the thickened oceanic lithosphere of the Yakutat oceanic plateau is subducting beneath the continental lithosphere. In this work, we calculate the thermal conditions and stable mineral assemblages in the slab crust and mantle in order to assess the role that water plays in altering the density of the subducting slab. Our slab density results show that a moderate amount of hydration (1–1.5 wt% H2O) in the subducting crust and upper lithospheric mantle reduces slab density by 0.5%–0.8% relative to an anhydrous slab, and is sufficient to maintain slab buoyancy to 300–400 km from the trench. These models show that water is a viable factor in influencing the subduction geometry in Alaska, and is likely important globally.  more » « less
Award ID(s):
1645227
PAR ID:
10450797
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
22
Issue:
5
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Shear wave splitting is often assumed to be caused by mantle flow or preexisting lithospheric fabrics. We present 2,389 new SKS shear wave splitting observations from 384 broadband stations deployed in Alaska from January 2010 to August 2017. In Alaska, splitting appears to be controlled by the absolute plate motion (APM) of the North American and Pacific plates, the interaction between the two plates, and the geometry of the subducting Pacific‐Yakutat plate. Outside of the subduction zone's influence, the fast directions in northern Alaska parallel the North American APM direction. Fast directions near the Queen Charlotte‐Fairweather transform margin are parallel to the faults and are likely caused by the strike‐slip deformation extending throughout the lithosphere. In the mantle wedge, fast directions are oriented along the strike of the slab with large splitting times and are caused by along‐strike flow in the mantle wedge as the slab provides a barrier to flow. South of the Alaska Peninsula, the fast directions are parallel to the trench regardless of sea floor fabric, indicating along strike flow under the Pacific plate. Under the Kenai Peninsula, the complex flat slab geometry may cause subslab flow to be parallel to Pacific APM direction or to the North America‐Pacific relative motion. 
    more » « less
  2. SUMMARY Tectonic plate motions predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere and slab–upper plate interface. A wide range of observations from active subduction zones and exhumed rocks suggest that subduction interface shear zone rheology is sensitive to the composition of subducting crustal material—for example, sediments versus mafic igneous oceanic crust. Here we use 2-D numerical models of dynamically consistent subduction to systematically investigate how subduction interface viscosity influences large-scale subduction kinematics and dynamics. Our model consists of an oceanic slab subducting beneath an overriding continental plate. The slab includes an oceanic crustal/weak layer that controls the rheology of the interface. We implement a range of slab and interface strengths and explore how the kinematics respond for an initial upper mantle slab stage, and subsequent quasi-steady-state ponding near a viscosity jump at the 660-km-discontinuity. If material properties are suitably averaged, our results confirm the effect of interface strength on plate motions as based on simplified viscous dissipation analysis: a ∼2 order of magnitude increase in interface viscosity can decrease convergence speeds by ∼1 order of magnitude. However, the full dynamic solutions show a range of interesting behaviour including an interplay between interface strength and overriding plate topography and an end-member weak interface-weak slab case that results in slab break-off/tearing. Additionally, for models with a spatially limited, weak sediment strip embedded in regular interface material, as might be expected for the subduction of different types of oceanic materials through Earth’s history, the transient response of enhanced rollback and subduction velocity is different for strong and weak slabs. Our work substantiates earlier suggestions as to the importance of the plate interface, and expands the range of quantifiable links between plate reorganizations, the nature of the incoming and overriding plate and the potential geological record. 
    more » « less
  3. Abstract The trondhjemite-tonalite-granodiorite (TTG) suite of rocks prominent in Earth’s Archean continents is thought to form by melting of hydrated basalt, but the specific tectonic settings of formation are unclear. Models for TTG genesis range from melting of downgoing mafic crust during subduction into a hotter mantle to melting at the base of a thick crustal plateau; while neither uniquely defines a global tectonic regime, the former is consistent with mobile lid tectonics and the latter a stagnant lid. One major problem for a subduction model is slabs sinking too quickly and steeply in a hotter mantle to melt downgoing crust. I show, however, that grain size reduction in the lithosphere leads to relatively strong plate boundaries on the early Earth, which slow slab sinking. During this “sluggish subduction,” sinking plates can heat up enough to melt when the mantle temperature is ≳1600 °C. Crustal melting via sluggish subduction can thus explain TTG formation during the Archean due to elevated mantle temperatures and the paucity of TTG production since due to mantle cooling. 
    more » « less
  4. null (Ed.)
    Abstract Megathrust earthquake behavior in subduction zones is controlled by a variety of factors including the hydration state of the subducting slab. Increased hydration reduces the occur-rence of great, damaging earthquakes by diminishing the strength of the material along the interface between tectonic plates. Understanding variations in hydration in subductions zones is necessary for properly assessing the overall hazard posed by each region. Fortunately, seismic anisotropy is strongly dependent upon hydration of the subducting crust and litho-sphere. I present shear-wave splitting measurements that illuminate changes in anisotropy, and therefore hydration, of the subducting Pacific plate beneath the Alaska subduction zone (northern Pacific Ocean). Variations in shear-wave splitting directly correlate to changes in the behavior of great, megathrust earthquakes. My measurements show that the Shumagin seismic gap is characterized by a hydrated subducting slab, explaining the long-term lack of great earthquakes. Observations in the immediately adjacent Semidi segment, which experiences great events regularly, indicate a far less hydrated slab. These results are driven by the preferential alignment of paleo-spreading fabrics of the Pacific plate. Where fabrics are more closely aligned with the orientation of the trench, outer-rise faulting and plate hydration is enhanced. These results highlight the importance of changes in preexisting slab structures and subsequent hydration in the production of great, damaging earthquakes. 
    more » « less
  5. Abstract At subduction zones, significant volumes of sediments and other crustal material are carried on top of the downgoing plate past the trench and into the mantle. This represents the dominant process by which material from the Earth's surface is recycled to the interior. However, the fate of these recycled materials is uncertain. Subducted material may be carried with the slab into the deep mantle, or it may form diapirs that ascend into the hotter portions of the mantle wedge, where they can melt and/or be relaminated to the base of the arc crust. While this material can be a mixture (or “mélange”) of sediments, oceanic crust and mantle rocks, here we focus on the dynamics of the uppermost layer of sediments on the downgoing slab. We modified a thermodynamic model to accurately predict the equilibrium mineral assemblage, melting behavior, and density of a range of subducted sediment compositions at pressure and temperature conditions relevant to subduction zones. Using this thermodynamic model, we constructed a coupled dynamic model of sediment diapirs and identified the primary parameters that control diapir behavior: sediment thickness and composition, and the thermal state of the subduction zone. Relamination of ascending diapirs is favored by greater sediment thicknesses, more felsic compositions, and warmer thermal conditions. By contrast, diapirism is suppressed in colder arcs, or where subducted sediment layers are thin or more mafic. Applying this model to modern subduction zones suggests that multiple processes are active today, with relamination occurring in a significant subset of modern arcs. 
    more » « less