skip to main content


Title: slim shady is a novel allele of PHYTOCHROME B present in the T‐DNA line SALK_015201
Abstract

Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin, rapid changes in transcript and protein abundance occur in hypocotyls, and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin‐regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we calledslim shady, in an annotated insertion line inIMMUNOREGULATORY RNA‐BINDING PROTEIN(IRR). Overexpression of theIRRgene failed to rescue theslim shadyphenotype and characterization of a second T‐DNA allele of IRR found that it had a wild‐type (WT) hypocotyl length. Theslim shadymutant has an elevated expression of numerous genes associated with the brassinosteroid‐auxin‐phytochrome (BAP) regulatory module compared to WT, including transcription factors that regulate brassinosteroid, auxin, and phytochrome pathways. Additionally,slim shadyseedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence data and genetic complementation analysis with SALK_015201C, we determined that a novel single nucleotide polymorphism inPHYTOCHROME Bwas responsible for theslim shadyphenotype. This is predicted to induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase‐related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses withphyb‐9confirmed thatslim shadyis a mutant allele ofPHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin‐dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T‐DNA stocks.

 
more » « less
PAR ID:
10450812
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plant Direct
Volume:
5
Issue:
6
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization ofPHYTOCHROME INTERACTING FACTORproteins and subsequent induction ofYUCCAauxin biosynthetic genes. To investigate the role ofYUCCAgenes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure.YUCCA2, 5, 8,and9are all induced with similar kinetics suggesting that theycould act redundantly to control shade-mediated elongation. To test this hypothesis we constructed ayucca2, 5, 8, 9quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows thatYUCCAauxin biosynthetic genes are essential for detectable shade avoidance and thatYUCCAgenes are important for petiole shade avoidance.

     
    more » « less
  2. null (Ed.)
    High ambient temperature due to global warming has a profound influence on plant growth and development at all stages of life cycle. Plant response to high ambient temperature termed thermomorphogenesis is characterized by hypocotyl and petiole elongation, and hyponastic growth at seedling stage. However, the molecular mechanism of thermomorphogenesis is still rudimentary. Here, we show that a set of four SUPPRESSOR OF PHYA-105 (SPA) genes is required for thermomorphogenesis. Consistently, SPAs are necessary for global gene expression changes in response to high ambient temperature. SPA1 level is unaffected, while the thermosensor phyB is stabilized in the spaQ mutant at high ambient temperature. Furthermore, in the absence of four SPA genes, the pivotal transcription factor PIF4 fails to accumulate, indicating a role of SPAs in regulating the phyB-PIF4 module at high ambient temperature. SPA1 directly phosphorylates PIF4 in vitro, and a mutant SPA1 affecting the kinase activity fails to rescue the PIF4 level as well as the thermo-insensitive phenotype of spaQ, suggesting that the SPA1 kinase activity is necessary for thermomorphogenesis. Taken together, these data suggest that SPAs are new components that integrate light and temperature signaling via fine tuning the phyB-PIF4 module. 
    more » « less
  3. The members of the phytochrome (phy) family of bilin-containing photoreceptors are major regulators of plant photomorphogenesis through their unique ability to photointerconvert between a biologically inactive red light-absorbing Pr state and an active far-red light-absorbing Pfr state. While the initial steps in Pfr signaling are unclear, an early event for the phyB isoform after photoconversion is its redistribution from the cytoplasm into subnuclear foci known as photobodies (PBs), which dissipate after Pfr reverts back to Pr by far-red irradiation or by temperature-dependent nonphotochemical reversion. Here we present evidence that PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) functions both as an essential structural component of phyB-containing PBs and as a direct regulator of thermal reversion that is sufficient to stabilize phyB as Pfr in vitro. By examining the genetic interaction between a constitutively active phyBY276H-YFP allele (YHB-YFP) and PCH1, we show that the loss of PCH1 prevents YHB from coalescing into PBs without affecting its nuclear localization, whereas overexpression of PCH1 dramatically increases PB levels. Loss of PCH1, presumably by impacting phyB-PB assembly, compromises a number of events elicited inYHB-YFPplants, including their constitutive photomorphogenic phenotype, red light-regulated thermomorphogenesis, and input of phyB into the circadian clock. Conversely, elevated levels of both phyB and PCH1 generate stable, yet far-red light–reversible PBs that persisted for days. Collectively, our data demonstrate that the assembly of PCH1-containing PBs is critical for phyB signaling to multiple outputs and suggest that altering PB dynamics could be exploited to modulate plant responses to light and temperature.

     
    more » « less
  4. Abstract

    Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) are evolutionarily conserved sensing and signaling components eliciting responses through unknown connection(s). Here, via a suppressor screen, we identify two phyB mutant alleles that revert the dwarf and high salicylic acid phenotypes of the high MEcPP containing mutantceh1. Biochemical analyses show high phyB protein levels in MEcPP-accumulating plants resulting from reduced expression of phyB antagonists and decreased auxin levels. We show that auxin treatment negatively regulates phyB abundance. Additional studies identify CAMTA3, a MEcPP-activated calcium-dependent transcriptional regulator, as critical for maintaining phyB abundance. These studies provide insights into biological organization fundamentals whereby a signal from a single plastidial metabolite is transduced into an ensemble of regulatory networks controlling the abundance of phyB, positioning plastids at the information apex directing adaptive responses.

     
    more » « less
  5. Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light–absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1). Loss-of-function swap1-1 mutant is hyposensitive to red light and exhibits a day length–independent early flowering phenotype. SWAP1 physically interacts with two other splicing factors, (SFPS) SPLICING FACTOR FOR PHYTOCHROME SIGNALING and (RRC1) REDUCED RED LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 in a light-independent manner and forms a ternary complex. In addition, SWAP1 physically interacts with photoactivated phyB and colocalizes with nuclear phyB photobodies. Phenotypic analyses show that the swap1sfps , swap1rrc1, and sfpsrrc1 double mutants display hypocotyl lengths similar to that of the respective single mutants under red light, suggesting that they function in the same genetic pathway. The swap1sfps double and swap1sfpsrrc1 triple mutants display pleiotropic phenotypes, including sterility at the adult stage. Deep RNA sequencing (RNA-seq) analyses show that SWAP1 regulates the gene expression and pre–messenger RNA (mRNA) alternative splicing of a large number of genes, including those involved in plant responses to light signaling. A comparative analysis of alternative splicing among single, double, and triple mutants showed that all three splicing factors coordinately regulate the alternative splicing of a subset of genes. Our study uncovered the function of a splicing factor that modulates light-regulated alternative splicing by interacting with photoactivated phyB and other splicing factors. 
    more » « less