skip to main content

Title: Climate and food web effects on the spring clear‐water phase in two north‐temperate eutrophic lakes

Although climate change has shifted the phenological timing of plankton in lakes, few studies have explicitly addressed the relative contributions of climate change and other factors, including planktivory and nutrient availability. The spring clear‐water phase is a period of marked reduction in algal biomass and increased water transparency observed in many lakes. Here, we quantified the phenological patterns in the start date, maximum date, duration, and magnitude of the clear‐water phase over 38 yr in Lakes Mendota and Monona, and examined the effects of water temperature, total phosphorus, and food web structure (proportion of large‐bodiedDaphnia pulicariaand density of invasiveBythotrephes) and interactions between temperature and other predictors on these clear‐water phase metrics. We found that climate and food web structure affected the clear‐water phase, but the effects differed among the metrics. Higher water temperature led to earlier clear‐water phase start dates and maximum dates in both lakes. The proportion ofD. pulicariaaffected all clear‐water phase metrics in both lakes. WhenD. pulicariaproportion was higher, the clear‐water phase occurred earlier, lasted longer, and the water was clearer. Moreover, highBythotrephesdensity delayed clear‐water phase start dates (both lakes), and decreased clear‐water phase duration (Lake Mendota) in the following year. These results suggest that variation in food web structure changes the full phenological dynamics of the clear‐water phase, while variation in climate condition affects clear‐water phase timing only. Our findings highlight the importance of large‐bodied grazers for managing water quality under climate change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Page Range / eLocation ID:
p. 30-46
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region. 
    more » « less
  2. Abstract

    Ice‐off dates on lakes are some of the longest phenological records in the field of ecology, and some of the best evidence of long‐term climatic change. However, there has been little investigation as to whether the date of ice‐off on a lake impacts spring and summer ecosystem dynamics. Here, I analyzed 274 years of long‐term data from eight north temperate lakes in two climate zones to address whether lakes have ecological memory of ice‐off in the subsequent summer. Five metrics were investigated: epilimnion temperatures, hypolimnion temperatures, hypolimnetic oxygen drawdown, water clarity, and spring primary productivity. The response of the metrics to ice‐off date were variable across latitude and lake type. The northern set of lakes stratified quickly following ice‐off, and early ice‐off years resulted in significantly warmer hypolimnetic temperatures. Oxygen depletion in the hypolimnion was not impacted by ice‐off date, likely because in late ice‐off years the lakes did not fully mix. In the southern lakes, ice‐off date was not correlated to the onset of stratification, with the latter being a more dominant control on hypolimnetic temperature and oxygen. The implications of these findings is that as ice‐off date trends earlier in many parts of the world, the lakes that will likely experience the largest changes in spring and summer ecosystem properties are the lakes that currently have the longest duration of lake ice. In considering a future with warmer winters, these results provide a starting point for predicting how lake ecosystem properties will change with earlier ice‐off.

    more » « less
  3. Beisner, Beatrix E (Ed.)
    Abstract The prolonged ice cover inherent to alpine lakes incurs unique challenges for aquatic life, which are compounded by recent shifts in the timing and duration of ice cover. To understand the responses of alpine zooplankton, we analyzed a decade (2009–2019) of open-water samples of Daphnia pulicaria and Hesperodiaptomus shoshone for growth, reproduction and ultraviolet radiation tolerance. Due to reproductive differences between taxa, we expected clonal cladocerans to exhibit a more rapid response to ice-cover changes relative to copepods dependent on sexual reproduction. For D. pulicaria, biomass and melanization were lowest after ice clearance and increased through summer, whereas fecundity was highest shortly after ice-off. For H. shoshone, biomass and fecundity peaked later but were generally less variable through time. Among years, ice clearance date varied by 49 days; years with earlier ice-out and a longer growing season supported higher D. pulicaria biomass and clutch sizes along with greater H. shoshone fecundity. While these large-bodied, stress tolerant zooplankton taxa were relatively resilient to phenological shifts during the observation period, continued losses of ice cover may create unfavorably warm conditions and facilitate invasion by montane species, emphasizing the value of long-term data in assessing future changes to these sensitive ecosystems. 
    more » « less
  4. Invasive species impart abrupt changes on ecosystems, but their impacts on microbial communities are often overlooked. We paired a 20 y freshwater microbial community time series with zooplankton and phytoplankton counts, rich environmental data, and a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that were disrupted by the invasions of spiny water flea ( Bythotrephes cederströmii ) and zebra mussels ( Dreissena polymorpha ). First, we detected shifts in Cyanobacteria phenology. After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwater; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into the diatom-dominated spring. During summer, the spiny water flea invasion sparked a cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra mussel invasion, microcystin increased in early summer and the duration of toxin production increased by over a month. Third, we observed shifts in heterotrophic bacteria phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage were differentially more abundant. The proportion of the bacterial community that changed differed by season; spring and clearwater communities changed most following the spiny water flea invasion that lessened clearwater intensity, while summer communities changed least following the zebra mussel invasion despite the shifts in Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as primary drivers of the observed phenological changes. These long-term invasion-mediated shifts in microbial phenology demonstrate the interconnectedness of microbes with the broader food web and their susceptibility to long-term environmental change. 
    more » « less
  5. Abstract

    The timing of biological events in plants and animals, such as migration and reproduction, is shifting due to climate change. Anadromous fishes are particularly susceptible to these shifts as they are subject to strong seasonal cycles when transitioning between marine and freshwater habitats to spawn. We used linear models to determine the extent of phenological shifts in adult AlewifeAlosa pseudoharengusas they migrated from ocean to freshwater environments during spring to spawn at 12 sites along the northeastern USA. We also evaluated broadscale oceanic and atmospheric drivers that trigger their movements from offshore to inland habitats, including sea surface temperature, North Atlantic Oscillation index, and Gulf Stream index. Run timing metrics of initiation, median (an indicator of peak run timing), end, and duration were found to vary among sites. Although most sites showed negligible shifts towards earlier timing, statistically significant changes were detected in three systems. Overall, winter sea surface temperature, spring and fall transition dates, and annual run size were the strongest predictors of run initiation and median dates, while a combination of within‐season and seasonal‐lag effects influenced run end and duration timing. Disparate results observed across the 12 spawning runs suggest that regional environmental processes were not consistent drivers of phenology and local environmental and ecological conditions may be more important. Additional years of data to extend time series and monitoring of Alewife timing and movements in nearshore habitats may provide important information about staging behaviors just before adults transition between ocean and freshwater habitats.

    more » « less