skip to main content


Title: Organization of peptidoglycan synthesis in nodes and separate rings at different stages of cell division of Streptococcus pneumoniae
Abstract

Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid‐shapedStreptococcus pneumoniae(Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examinedSpncells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D‐SIM (structured‐illumination microscopy). Labeling with fluorescent D‐amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin‐binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading‐edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA‐marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced “nodes” of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.

 
more » « less
Award ID(s):
1615907 1927504
NSF-PAR ID:
10450847
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
115
Issue:
6
ISSN:
0950-382X
Page Range / eLocation ID:
p. 1152-1169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen,Streptococcus pneumoniae. Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZmutant and anotherStreptococcusspecies. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells andftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling inS. pneumoniaecells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate inS. pneumoniae.

     
    more » « less
  2. To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane, peptidoglycan (PG), and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division.

     
    more » « less
  3. Abstract Flies have an open circulatory system and their Blood Brain Barrier (BBB) surrounds the brain like a tight cap. The fly BBB consists of two layers of glial cells. The outer layer is formed by the Perineurial Glia (PG). The inner BBB layer consists of the Subperineurial Glia (SPG) that form the tight barrier that, like its mammalian counterpart, acts both as a diffusion and a xenobiotic transport barrier. Underneath the SPG lie the neuronal cell bodies. The Drosophila BBB shows the same barrier properties as the mammalian barrier and profiling of Drosophila BBB cells has shown a high degree of molecular conservation. We have previously shown that the Drosophila BBB plays a sex-specific role in regulating behavior. Conditional adult feminization of SPG cells in otherwise normal males leads to significantly reduced courtship. In agreement with this, in a microarray screen of isolated SPG cells, we identified a number of male-enriched transcripts. One of them encodes the dopamine-2 like receptor (D2R). We have found that conditional knockdown of D2R in adult male Drosophila SPG decreases courtship. Likewise, D2R mutant males have courtship defects. They can be rescued by expression of wildtype D2R in the SPG cells of mature adult males, demonstrating a physiological requirement for the receptor in these cells for courtship control4. The D2R receptor is highly conserved. It has been found that it can act via biased signaling (through G protein or b-arrestin) in mammals. We have previously found that signaling through Gao and arrestin in the BBB is required for proper male courtship. Although D2R is best known for signaling through cAMP, we have not found a requirement for cAMP/PKA signaling for courtship. To investigate the signaling pathways downstream of D2R that are responsible for courtship control we have mutagenized D2R proteins and examined their ability to rescue D2R mutants. Based on Peterson et al. we designed proteins capable of G-protein or arrestin biased signaling, respectively, and tested their ability to rescue the courtship defects of D2R mutants. Our data suggest that D2R signaling through b-arrestin is a major mediator of BBB courtship control. 
    more » « less
  4. Abstract

    The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ’s treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.

     
    more » « less
  5. Abstract

    The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individualEscherichia colibacteria. Upon inducing overexpression ofminE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point the ring formation initiates as early as before induction. These results highlight the contribution of Min proteins to cell size control, which may be partially responsible for the size fluctuations observed in bacterial populations, and may clarify how the size difference acquired during asymmetric cell division is offset.

     
    more » « less