A<sc>bstract</sc> We presentνDoBe, a Python tool for the computation of neutrinoless double beta decay (0νββ) rates in terms of lepton-number-violating operators in the Standard Model Effective Field Theory (SMEFT). The tool can be used for automated calculations of 0νββrates, electron spectra and angular correlations for all isotopes of experimental interest, for lepton-number-violating operators up to and including dimension 9. The tool takes care of renormalization-group running to lower energies and provides the matching to the low-energy effective field theory and, at lower scales, to a chiral effective field theory description of 0νββrates. The user can specify different sets of nuclear matrix elements from various many-body methods and hadronic low-energy constants. The tool can be used to quickly generate analytical and numerical expressions for 0νββrates and to generate a large variety of plots. In this work, we provide examples of possible use along with a detailed code documentation. The code can be accessed through: GitHub:https://github.com/OScholer/nudobe Online User-Interface:https://oscholer-nudobe-streamlit-4foz22.streamlit.app/
more »
« less
A population‐genomic approach for estimating selection on polygenic traits in heterogeneous environments
Abstract Strong selection can cause rapid evolutionary change, but temporal fluctuations in the form, direction and intensity of selection can limit net evolutionary change over longer time periods. Fluctuating selection could affect molecular diversity levels and the evolution of plasticity and ecological specialization. Nonetheless, this phenomenon remains understudied, in part because of analytical limitations and the general difficulty of detecting selection that does not occur in a consistent manner. Herein, I fill this analytical gap by presenting an approximate Bayesian computation (ABC) method to detect and quantify fluctuating selection on polygenic traits from population genomic time‐series data. I propose a model for environment‐dependent phenotypic selection. The evolutionary genetic consequences of selection are then modelled based on a genotype–phenotype map. Using simulations, I show that the proposed method generates accurate and precise estimates of selection when the generative model for the data is similar to the model assumed by the method. The performance of the method when applied to an evolve‐and‐resequence study of host adaptation in the cowpea seed beetle (Callosobruchus maculatus) was more idiosyncratic and depended on specific analytical choices. Despite some limitations, these results suggest the proposed method provides a powerful approach to connect the causes of (variable) selection to traits and genome‐wide patterns of evolution. Documentation and open‐source computer software (fsabc) implementing this method are available fromgithub(https://github.com/zgompert/fsabc.git).
more »
« less
- Award ID(s):
- 1844941
- PAR ID:
- 10450852
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology Resources
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1755-098X
- Page Range / eLocation ID:
- p. 1529-1546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Protein language models, like the popular ESM2, are widely used tools for extracting evolution-based protein representations and have achieved significant success on downstream biological tasks. Representations based on sequence and structure models, however, show significant performance differences depending on the downstream task. A major open problem is to obtain representations that best capture both the evolutionary and structural properties of proteins in general. Here we introduceImplicitStructureModel(ISM), a sequence-only input model with structurally-enriched representations that outperforms state-of-the-art sequence models on several well-studied benchmarks including mutation stability assessment and structure prediction. Our key innovations are a microenvironment-based autoencoder for generating structure tokens and a self-supervised training objective that distills these tokens into ESM2’s pre-trained model. We have madeISM’s structure-enriched weights easily available: integrating ISM into any application using ESM2 requires changing only a single line of code. Our code is available athttps://github.com/jozhang97/ISM.more » « less
-
Abstract Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available athttps://github.com/Androstane/NestedBD.more » « less
-
Abstract The widespread misuse of antibiotics has escalated antibiotic resistance into a critical global public health concern. Beyond antibiotics, metals function as antibacterial agents. Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials and may also foster antibiotic resistance within bacterial communities through co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values and produces a high false negative rate. Other than the best hit approach, only a few antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, these tools lack comprehensive annotation for MRGs conferring resistance to multiple metals. To address such limitations, we introduce DeepMRG, a deep learning-based multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable of predicting multiple metal labels associated with an MRG. It leverages bit score-based similarity distribution of sequences with experimentally verified MRGs. To ensure unbiased model evaluation, we employed a clustering method to partition our dataset into six subsets, five for cross-validation and one for testing, with non-homologous sequences, mitigating the impact of sequence homology. DeepMRG consistently achieved high overall F1-scores and significantly reduced false negative rates across a wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or isolate assemblies. The web server of DeepMRG can be accessed athttps://deepmrg.cs.vt.edu/deepmrgand the source code is available athttps://github.com/muhit-emon/DeepMRGunder the MIT license.more » « less
-
Abstract We present a new method and software tool called that applies a pangenome index to the problem of inferring genotypes from short-read sequencing data. The method uses a novel indexing structure called the marker array. Using the marker array, we can genotype variants with respect from large panels like the 1000 Genomes Project while reducing the reference bias that results when aligning to a single linear reference. can infer accurate genotypes in less time and memory compared to existing graph-based methods. The method is implemented in the open source software tool available athttps://github.com/alshai/rowbowt.more » « less
An official website of the United States government
