skip to main content


Title: A mathematical representation of the reactive scope model
Abstract

Researchers have long sought to understand and predict an animal’s response to stressful stimuli. Since the introduction of the concept of homeostasis, a variety of model frameworks have been proposed to describe what is necessary for an animal to remain within this stable physiological state and the ramifications of leaving it. Romero et al. (Horm Behav 55(3):375–389, 2009) introduced the reactive scope model to provide a novel conceptual framework for the stress response that assumes an animal’s ability to tolerate a stressful stimulus may degrade over time in response to the stimulus. We provide a mathematical formulation for the reactive scope model using a system of ordinary differential equations and show that this model is capable of recreating existing experimental data. We also provide an experimental method that may be used to verify the model as well as several potential additions to the model. If future experimentation provides the necessary data to estimate the model’s parameters, the model presented here may be used to make quantitative predictions about physiological mediator levels during a stress response and predict the onset of homeostatic overload.

 
more » « less
Award ID(s):
1655269
NSF-PAR ID:
10450886
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Mathematical Biology
Volume:
87
Issue:
3
ISSN:
0303-6812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stress resilience is defined as the ability to rebound to a homeostatic state after exposure to a perturbation. Organisms modulate various physiological mediators to respond to unpredictable changes in their environment. The gut microbiome is a key example of a physiological mediator that coordinates a myriad of host functions including counteracting stressors. Here, we highlight the gut microbiome as a mediator of host stress resilience in the framework of the reactive scope model. The reactive scope model integrates physiological mediators with unpredictable environmental changes to predict how animals respond to stressors. We provide examples of how the gut microbiome responds to stressors within the four ranges of the reactive scope model (i.e., predictive homeostasis, reactive homeostasis, homeostatic overload, and homeostatic failure). We identify measurable metrics of the gut microbiome that could be used to infer the degree to which the host is experiencing chronic stress, including microbial diversity, flexibility, and gene richness. The goal of this perspective piece is to highlight the underutilized potential of measuring the gut microbiome as a mediator of stress resilience in wild animal hosts.

     
    more » « less
  2. Abstract Learning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive–reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes ( npas4a and gabbr1a ) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles. 
    more » « less
  3. Environmental contextDimethylsulfoniopropionate (DMSP), a small sulfur compound biosynthesised by algae, plays an important role in global climate, particularly in polar regions. We investigated salinity effects on DMSP levels, and provide the first experimental measurements of DMSP and associated physiological changes in a polar diatom across to a range of gradual salinity shifts representative of sea-ice conditions. Quantitative estimates of DMSP in polar diatoms following salinity changes will facilitate new mathematical models to predict seasonal responses and reactions to climate change.AbstractAlthough extreme environmental gradients within sea-ice have been proposed to stimulate dimethylsulfoniopropionate (DMSP) accumulation in diatoms, a taxa whose temperate counterparts show relatively low concentrations, this has yet to be experimentally validated across a range of salinities representative of sea-ice conditions. The present study examined changes in DMSP concentrations in the widespread polar diatom Fragilariopsis cylindrus in response to gradual salinity shifts representative of those encountered during sea-ice formation and melt. DMSP concentrations were elevated up to 127% in 70-salinity cultures. Low-salinity shifts decreased intracellular DMSP concentrations in a gradient-dependent manner that suggests DMSP recycling rather than release under milder hyposalinity shifts. Permeable membranes were detected in ~45% of 10-salinity cells; therefore, loss of membrane integrity may only partially explain DMSP release in the lowest-salinity group. Growth rates, photosynthetic efficiency of photosystem II and reactive oxygen species detection indicated only partial impairment by salinity stress in this organism. Thus, experimental evidence supports the role of DMSP as a compatible solute in the acclimation of a sea-ice diatom across large salinity gradients and measurements of associated physiological changes will improve interpretation of environmental measurements. 
    more » « less
  4. Abstract

    As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well‐known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2S; however, it is imperative to understand the molecular basis using the state‐of‐the‐art CRISPR‐Cas gene‐editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2S. Here, we review recent advances in understanding the beneficial roles of H2S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2S and other signal molecules; as well as highlighting some genetic engineering‐based current and future directions.

     
    more » « less
  5. Premise

    Plant sex is usually fixed, but in rare cases, sex expression is flexible and may be influenced by environmental factors. Theory links female sex expression to better health, but manipulative work involving the experimental change of health via injury is limited, particularly in sexually plastic species. A better understanding of mechanisms influencing shifts in sex is essential to our understanding of life history theory regarding trade‐offs in sex allocation and differential mortality.

    Methods

    We investigated the relationship between physiological stress and sex expression in sexually plastic striped maple trees (Acer pensylvanicum) by inflicting damage of various intensities (crown pruning, defoliation, and hydraulic restriction). We then monitored the sex expression of injured and control individuals for 2 years to assess the extent to which injury may cue changes in sex expression.

    Results

    We found that severe damage such as full defoliation or severe pruning increased odds of changing sex to female and decreased odds of changing to male. In fact, no pruned male trees flowered male 2 years later, while all males in the control group flowered partially or fully male. After full defoliation, trees had 4.5 times higher odds of flowering female. Not all injury is equal; less‐severe physical trauma did not affect the frequency of sex change to femaleness.

    Conclusions

    This work demonstrates that physical trauma in striped maple appears to exhibit a threshold effect in which only the most stressful of physiological cues instigate changes in sex expression, a phenomenon previously unknown, and that damage stress is strongly correlated with switching to femaleness. These findings have implications for population sex ratios and sustainability within an increasing stressful climate regime.

     
    more » « less