skip to main content


Title: The Upper Tail of Precipitation in Convection‐Permitting Regional Climate Models and Their Utility in Nonstationary Rainfall and Flood Frequency Analysis
Abstract

Computational advances have made atmospheric modeling at convection‐permitting (≤4 km) grid spacings increasingly feasible. These simulations hold great promise in the projection of climate change impacts including rainfall and flood extremes. The relatively short model runs that are currently feasible, however, inhibit the assessment of the upper tail of rainfall and flood quantiles using conventional statistical methods. Stochastic storm transposition (SST) and process‐based flood frequency analysis are two approaches that together can help to mitigate this limitation. SST generates large numbers of extreme rainfall scenarios by temporal resampling and geospatial transposition of rainfall fields from relatively short data sets. Coupling SST with process‐based flood frequency analysis enables exploration of flood behavior at a range of spatial and temporal scales. We apply these approaches with outputs of 13‐year simulations of regional climate to examine changes in extreme rainfall and flood quantiles up to the 500‐year recurrence interval in a medium‐sized watershed in the Midwestern United States. Intensification of extreme precipitation across a range of spatial and temporal scales is identified in future climate; changes in flood magnitudes depend on watershed area, with small watersheds exhibiting the greatest increases due to their limited capacity to attenuate flood peaks. Flood seasonality and snowmelt are predicted to be earlier in the year under projected warming, while the most extreme floods continue to occur in early summer. Findings highlight both the potential and limitations of convection‐resolving climate models to help understand possible changes in rainfall and flood frequency across watershed scales.

 
more » « less
Award ID(s):
1749638
NSF-PAR ID:
10450921
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
8
Issue:
10
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urban development, topographic relief, and coastal boundaries can all exert influences on storm hydroclimatology, making rainfall and flood frequency analysis a major challenge. This study explores heterogeneity in extreme rainfall in the Baltimore Metropolitan region at small spatial scales using hydrometeorological analyses of major storm events in combination with hydroclimatological analyses based onstorm catalogsdeveloped using a 16‐year record of high‐resolution bias‐corrected radar rainfall fields. Our analyses demonstrate the potential for rainfall frequency methods using storm catalogs combined with stochastic storm transposition (SST); procedures are implemented for Dead Run, a small (14.3 km2) urban watershed located within the Baltimore Metropolitan area. The results point to the pronounced impact of complex terrain (including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in the region) on the regional rainfall climatology. Warm‐season thunderstorm systems are shown to be the dominant mechanism for generating extreme, short‐duration rainfall that leads to flash flooding. The SST approach is extended through the implementation of amultiplier fieldthat accounts for spatial heterogeneities in extreme rainfall magnitude. SST‐based analyses demonstrate the need to consider rainfall heterogeneity at multiple scales when estimating the rainfall intensity‐duration‐frequency relationships.

     
    more » « less
  2. Abstract

    Estimating the probabilities of rare floods in mountainous watersheds is challenging due to the hydrometeorological complexity of seasonally varying snowmelt and soil moisture dynamics, as well as spatiotemporal variability in extreme precipitation. Design storm methods and statistical flood frequency analyses often overlook these complexities and how they shape the probabilities of rare floods. This study presents a process‐based approach that combines gridded precipitation, stochastic storm transposition (SST), and physics‐based distributed rainfall‐runoff modeling to simulate flood peak and volume distributions up to the 10,000‐year recurrence interval and to provide insights into the hydrometeorological drivers of those events. The approach is applied to a small mountainous watershed in the Colorado Front Range in the United States. We show that storm transposition in the Front Range can be justified under existing definitions of regional precipitation homogeneity. The process‐based results show close agreement with a statistically based mixture distribution that considers underlying flood drivers. We further demonstrate that antecedent conditions and snowmelt drive frequent peak discharges and rarer flood volumes, while the upper tail of the flood peak distribution appears to be controlled by heavy rainfall and rain‐on‐snow. In particular, we highlight the important role of early fall extreme rainfall in controlling rare flood peaks (but not volumes), despite only one such event having been observed in recent decades. Notwithstanding issues related to the accuracy of gridded precipitation datasets, these findings highlight the potential of SST and process‐based modeling to help understand the relationships between flood drivers and flood frequencies.

     
    more » « less
  3. Abstract. Floods are the product of complex interactions among processes includingprecipitation, soil moisture, and watershed morphology. Conventional floodfrequency analysis (FFA) methods such as design storms and discharge-basedstatistical methods offer few insights into these process interactions andhow they “shape” the probability distributions of floods. Understanding andprojecting flood frequency in conditions of nonstationary hydroclimate andland use require deeper understanding of these processes, some or all ofwhich may be changing in ways that will be undersampled in observationalrecords. This study presents an alternative “process-based” FFA approachthat uses stochastic storm transposition to generate large numbers ofrealistic rainstorm “scenarios” based on relatively short rainfall remotesensing records. Long-term continuous hydrologic model simulations are usedto derive seasonally varying distributions of watershed antecedentconditions. We couple rainstorm scenarios with seasonally appropriateantecedent conditions to simulate flood frequency. The methodology is appliedto the 4002 km2 Turkey River watershed in the Midwestern United States,which is undergoing significant climatic and hydrologic change. We show that,using only 15 years of rainfall records, our methodology can produce accurateestimates of “present-day” flood frequency. We found that shifts in theseasonality of soil moisture, snow, and extreme rainfall in the Turkey Riverexert important controls on flood frequency. We also demonstrate thatprocess-based techniques may be prone to errors due to inadequaterepresentation of specific seasonal processes within hydrologic models. Ifsuch mistakes are avoided, however, process-based approaches can provide auseful pathway toward understanding current and future flood frequency innonstationary conditions and thus be valuable for supplementing existing FFApractices. 
    more » « less
  4. Abstract

    Although prior studies have evaluated the role of sampling errors associated with local and regional methods to estimate peak flow quantiles, the investigation of epistemic errors is more difficult because the underlying properties of the random variable have been prescribed using ad‐hoc characterizations of the regional distributions of peak flows. This study addresses this challenge using representations of regional peak flow distributions derived from a combined framework of stochastic storm transposition, radar rainfall observations, and distributed hydrologic modeling. The authors evaluated four commonly used peak flow quantile estimation methods using synthetic peak flows at 5,000 sites in the Turkey River watershed in Iowa, USA. They first used at‐site flood frequency analysis using the Pearson Type III distribution with L‐moments. The authors then pooled regional information using (1) the index flood method, (2) the quantile regression technique, and (3) the parameter regression. This approach allowed quantification of error components stemming from epistemic assumptions, parameter estimation method, sample size, and, in the regional approaches, the number ofpooledsites. The results demonstrate that the inability to capture the spatial variability of the skewness of the peak flows dominates epistemic error for regional methods. We concluded that, in the study basin, this variability could be partially explained by river network structure and the predominant orientation of the watershed. The general approach used in this study is promising in that it brings new tools and sources of data to the study of the old hydrologic problem of flood frequency analysis.

     
    more » « less
  5. Abstract

    The impact of climate on topography, which is a theme in landscape evolution studies, has been demonstrated, mostly, at mountain range scales and across climate zones. However, in drylands, spatiotemporal discontinuities of rainfall and the crucial role of extreme rainstorms raise questions and challenges in identifying climate properties that govern surface processes. Here, we combine methods to examine hyperarid escarpment sensitivity to storm‐scale forcing. Using a high‐resolution DEM and field measurements, we analyzed the topography of a 40‐km‐long escarpment in the Negev desert (Israel). We also used rainfall intensity data from a convection‐permitting numerical weather model for storm‐scale statistical analysis. We conducted hydrological simulations of synthetic rainstorms, revealing the frequency of sediment mobilization along the sub‐cliff slopes. Results show that cliff gradients along the hyperarid escarpment increase systematically from the wetter (90 mm yr−1) southwestern to the drier (45 mm yr−1) northeastern sides. Also, sub‐cliff slopes at the southwestern study site are longer and associated with milder gradients and coarser sediments. Storm‐scale statistical analysis reveals a trend of increasing extreme (>10 years return‐period) intensities toward the northeast site, opposite to the trend in mean annual rainfall. Hydrological simulations based on these statistics indicate a higher frequency of sediment mobilization in the northeast, which can explain the pronounced topographic differences between the sites. The variations in landscape and rainstorm properties across a relatively short distance highlight the sensitivity of arid landforms to extreme events.

     
    more » « less