skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multivalent Aptamer‐Functionalized Single‐Strand RNA Origami as Effective, Target‐Specific Anticoagulants with Corresponding Reversal Agents
Abstract Anticoagulants are commonly utilized during surgeries and to treat thrombotic diseases like stroke and deep vein thrombosis. However, conventional anticoagulants have serious side‐effects, narrow therapeutic windows, and lack safe reversal agents (antidotes). Here, an alternative RNA origami displaying RNA aptamers as target‐specific anticoagulant is described. Improved design and construction techniques for self‐folding, single‐molecule RNA origami as a platform for displaying pre‐selected RNA aptamers with precise orientational and spatial control are reported. Nuclease resistance is added using 2′‐fluoro‐modified pyrimidines during in vitro transcription. When four aptamers are displayed on the RNA origami platform, the measured thrombin inhibition and anticoagulation activity is higher than observed for free aptamers, ssRNA‐linked RNA aptamers, and RNA origami displaying fewer aptamers. Importantly, thrombin inhibition is immediately switched off by addition of specific reversal agents. Results for single‐stranded DNA (ssDNA) and single‐stranded peptide nucleic acid (PNA) antidotes show restoration of 63% and 95% coagulation activity, respectively. To demonstrate potential for practical, long‐term storage for clinical use, RNA origami is freeze‐dried, and stored at room temperature. Freshly produced and freeze‐dried RNA show identical levels of activity in coagulation assays. Compared to current commercial intravenous anticoagulants, RNA origami‐based molecules show promise as safer alternatives with rapid activity switching for future therapeutic applications.  more » « less
Award ID(s):
1709010 1559077 1603179
PAR ID:
10450987
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
10
Issue:
11
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nucleic acid aptamers selected for thrombin binding have been previously shown to possess anticoagulant activity; however, problems with rapid renal clearance and short circulation half‐life have prevented translation to clinical usefulness. Here, a family of self‐folding, functional RNA origami molecules bearing multiple thrombin‐binding RNA aptamers and showing significantly improved anticoagulant activity is described. These constructs may overcome earlier problems preventing clinical use of nucleic acid anticoagulants. RNA origami structures are designed in silico and produced by in vitro transcription from DNA templates. Incorporation of 2'‐fluoro‐modified C‐ and U‐nucleotides is shown to increase nuclease resistance and stability during long‐term storage. Specific binding to human thrombin as well as high stability in the presence of RNase A and in human plasma, comparatively more stable than DNA is demonstrated. The RNA origami constructs show anticoagulant activity sevenfold greater than free aptamer and higher than previous DNA weave tiles decorated with DNA aptamers. Anticoagulation activity is maintained after at least 3 months of storage in buffer at 4 °C. Additionally, inhibition of thrombin is shown to be reversed by addition of single‐stranded DNA antidotes. This project paves the way for development of RNA origami for potential therapeutic applications especially as a safer surgical anticoagulant. 
    more » « less
  2. Abstract The maintenance of hemostasis to ensure vascular integrity is dependent upon the rapid conversion of zymogen species of the coagulation cascade to their enzymatically active forms. This process culminates in the generation of the serine protease thrombin and polymerization of fibrin to prevent vascular leak at sites of endothelial cell injury or loss of cellular junctions. Thrombin generation can be initiated by the extrinsic pathway of coagulation through exposure of blood to tissue factor at sites of vascular damage, or alternatively by the coagulation factor (F) XII activated by foreign surfaces with negative charges, such as glass, through the contact activation pathway. Here, we used transient particle tracking microrheology to investigate the mechanical properties of fibrin in response to thrombin generation downstream of both coagulation pathways. We found that the structural heterogeneity of fibrin formation was dependent on the reaction kinetics of thrombin generation. Pharmacological inhibition of FXII activity prolonged the time to form fibrin and increased the degree of heterogeneity of fibrin, resulting in fibrin clots with reduced mechanical properties. Taken together, this study demonstrates a dependency of the physical biology of fibrin formation on activation of the contact pathway of coagulation. 
    more » « less
  3. Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions. 
    more » « less
  4. Abstract Cell specific-targeted therapy (CSTT) for acute ischemic stroke remains underdeveloped. Cerebrovascular endothelial cells (CECs) are key components of the blood–brain barrier and are the first brain cells affected by ischemic stroke. After stroke, CEC injury causes insufficient energy supply to neurons and leads to cytotoxic and vasogenic brain edema. Aptamers are short single-stranded RNA or DNA molecules that can bind to specific ligands for cell specific delivery. The expression of vascular cell adhesion molecule-1 (VCAM-1) is increased on CECs after stroke. Herein, we report that an RNA-based VCAM-1-aptamer can specifically target CECs in stroke brains following transient middle cerebral artery occlusion in mice. Our data demonstrate the potential of an RNA-based aptamer as an effective delivery platform to target CECs after stroke. We believe this method will allow for the development of CSTT for treatment of patients with stroke. 
    more » « less
  5. DNA aptamers are short nucleotide oligomers selected to bind a target ligand with affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers as candidates for analytical and therapeutic applications that traditionally use antibodies as biorecognition elements. Numerous traditional and emerging analytical techniques have been proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of analyte in solution. Standard binding curves constructed by using equilibrated mixtures of aptamers titrated with thrombin were fitted with a 1:1 binding model and provided an effective Kd of the binding in the sub-nanomolar range. However, our experimental results suggest that this simple model does not satisfactorily describe the binding process; therefore, the possibility that the aptamer is composed of a mixture of two or more distinct Kd populations is discussed. The same standard curves, together with a four-parameter logistic equation, were used to determine “unknown” concentrations of thrombin in mock samples. The ability to identify and characterize complex binding stoichiometry, together with the determination of target analyte concentrations in the pM–nM range, supports the adoption of this technology for kinetics, equilibrium, and analytical purposes by employing aptamers as biorecognition elements. 
    more » « less