skip to main content

Title: Valley‐scale hydrogeomorphology drives river fish assemblage variation in Mongolia

River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Page Range / eLocation ID:
p. 6527-6535
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We examined how communities of macroinvertebrates occurring in functional process zones (FPZs) are affected by the location of FPZs in the river continuum. We delineated FPZs for three rivers displaying significant disparities in elevation, annual precipitation, valley shape, and other valley‐scale hydrogeomorphic variables. We extracted corresponding macroinvertebrate community data from the US National Water Quality Monitoring Council database and matched it to the stream order (SO) and FPZ delineations. We examined community structure in the three rivers by partitioning the variances associated with the FPZ and SO delineations. Then, we examined community variation as patterns of beta‐diversity for communities of FPZs in different SOs. In total, 23 FPZ‐SO configurations were examined. SO and FPZ delineations contributed similarly to the variance in the structure of macroinvertebrate communities. Taxa turnover accounted for the majority of the compositional change in communities of FPZs along the river continuum, while the functional composition showed primarily a nested structure. Pairwise comparison of communities for each FPZ along the river continuum showed that significant differences in community composition occurred at high SO in the three examined rivers. In this manuscript, we show that communities of FPZs are only partially comparable along the river continuum as significant compositional changes occur when comparing communities of FPZs in distant SOs. We bring, therefore, new elements to improve the interpretation of the River Ecosystem Synthesis concept that can have wider implications for understanding the biocomplexity of hydrogeomorphic patchiness in river networks.

    more » « less
  2. Abstract

    River hydrogeomorphology is a potential predictor of ecosystem and assemblage variation. We tested for fish assemblage variation as a function of hydrogeomorphology in a Midwestern US large river, the Wabash River. Fish data were classified by taxonomy and traits and we tested if assemblages varied with river hydrogeomorphology or river distance, defined into 10‐km distinct reaches. Three unique geomorphological units, Functional Process Zones (FPZ), were identified using an ArcGIS hydrogeomorphic model, based primarily on channel width, floodplain width, and down valley slope. Five locations were identified as FPZ A with narrow stream channel, high down valley slope, and an expansive floodplain. Ten locations were identified as FPZ B with a wide river channel and wide floodplain. Thirty‐five locations were identified as FPZ C with wide river channel and a constrained floodplain. The sites were categorized into three stream orders: 5, 6, and 7. We found hydrogeomorphology classified by unique FPZs or by river distance influenced taxonomic and functional fish assemblages for the Wabash River. There was high overlap among fish occurrences among FPZs, but nine species resulted as significant indicators of specific FPZs. Five traits were significant indicators of FPZs: an intermediate Swim Factor score, medium tolerance to silt, small‐large stream size preference, and two Shape Factor categories. Our conclusions are that fish assemblages respond strongly to local geomorphology and river distance, fitting the riverine ecosystem synthesis and the river continuum concept.

    more » « less
  3. Abstract

    Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS‐based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width‐to‐floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.

    more » « less
  4. Abstract

    Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.

    We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.

    Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.

    Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.

    Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.

    more » « less
  5. Abstract

    Environmental filtering and dispersal limitation are important processes within the metacommunity concept. Non‐random species turnover occurs in places where environmental filtering plays the key role in determining local community structure, whereas dispersal limitation causes nested patterns of species assemblages organized by non‐random colonization processes. However, factors that modify the relative importance of these processes remain unclear for many ecosystems. We tested whether salinity gradient affect the relative importance of environmental filtering and dispersal limitation for structuring epifaunal and infaunal communities in three lagoons in Hokkaido, Japan, that have different salinity gradients. Specifically, we compared patterns of species diversity and similarity of eelgrass‐associated invertebrate assemblages across space. Beta diversity (i.e., species turnover among different sites in each lagoon) was highest in Akkeshi, the lagoon with the salinity gradients. Variation partitioning of similarity components showed that spatial variation in the community assemblage pattern was mostly explained by environmental filtering in Akkeshi, but that it was explained more by species dispersal patterns and the difference in eelgrass biomass and shoot density in Notoro and Saroma, the lagoons without clear salinity gradient. Redundancy analysis showed that spatial variation in community structure was related to salinity and eelgrass biomass in Akkeshi, and to eelgrass aboveground biomass in Notoro and Saroma. Our findings highlight the effects of environmental heterogeneity on beta diversity and community structure and indicate that environmental gradients can be a key factor causing a shift in the relative importance of different metacommunity processes and the role of the foundation species in provisioning habitat.

    more » « less