skip to main content


Title: Can Smart Stormwater Systems Outsmart the Weather? Stormwater Capture with Real-Time Control in Southern California
Award ID(s):
2021015
NSF-PAR ID:
10451232
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS ES&T Water
Volume:
2
Issue:
1
ISSN:
2690-0637
Page Range / eLocation ID:
10 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Effective stormwater management requires systems that operate safely and deliver improved environmental outcomes in a cost-effective manner. However, current design practices typically evaluate performance assuming that a given system starts empty and operates independently from nearby stormwater infrastructure. There is a conspicuous need for more realistic design-phase indicators of performance that consider a larger set of initial conditions and the effects of coupled dynamics. To this end, we apply a control-theoretic method, called reachability analysis, to produce a more objective measure of system robustness. We seek two primary contributions in this work. First, we demonstrate how the application of reachability analysis to a dynamic model of a stormwater network can characterize the set of initial conditions from which every element in the network can avoid overflowing under a given surface runoff signal of finite duration. This is, to the authors’ knowledge, the first published application of reachability analysis to stormwater systems. Our second contribution is to offer an interpretation of the outcomes of the proposed reachability analysis as a measure of system robustness that can provide useful information when making critical design decisions. We illustrate the effectiveness of this method in revealing the trade-offs of particular design choices relative to a desired level of robustness. 
    more » « less
  2. Compared with capital improvement projects, real-time control of stormwater systems may be a more effective and efficient approach to address the increasing risk of flooding in urban areas. One way to automate the design process of control policies is through reinforcement learning (RL). Recently, RL methods have been applied to small stormwater systems and have demonstrated better performance over passive systems and simple rule-based strategies. However, it remains unclear how effective RL methods are for larger and more complex systems. Current RL-based control policies also suffer from poor convergence and stability, which may be due to large updates made by the underlying RL algorithm. In this study, we use the Proximal Policy Optimization (PPO) algorithm and develop control policies for a medium-sized stormwater system that can significantly mitigate flooding during large storm events. Our approach demonstrates good convergence behavior and stability, and achieves robust out-of-sample performance. 
    more » « less