Abstract The presence of magnetic fields in the late inspiral of black hole–neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate premerger interactions of the common magnetosphere of black hole–neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to fast-radio-burst-like transients and X-ray emission, with as an upper bound on the luminosity, whereB*is the magnetic field strength on the surface of the neutron star.
more »
« less
Stability and observability of magnetic primordial black hole-neutron star collisions
Abstract The collision of a primordial black hole with a neutron star results in the black hole eventually consuming the entire neutron star. However, if the black hole is magnetically charged, and therefore stable against decay by Hawking radiation, the consequences can be quite different. Upon colliding with a neutron star, a magnetic black hole very rapidly comes to a stop. For large enough magnetic charge, we show that this collision can be detected as a sudden change in the rotation period of the neutron star, a glitch or anti-glitch.We argue that the magnetic primordial black hole, which then settles to the core of the neutron star, does not necessarily devour the entire neutron star; the system can instead reach a long-lived, quasi-stable equilibrium. Because the black hole is microscopic compared to the neutron star, most stellar properties remain unchanged compared to before the collision. However, the neutron star will heat up and its surface magnetic field could potentially change, both effects potentially observable.
more »
« less
- PAR ID:
- 10451330
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2023
- Issue:
- 06
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains the compact binary populations that were used in the Cosmic Explorer MPSAC White paper1 (submitted to the NSF MPSAC ngGW Subcommittee) and the accompanying technical paper2. Contents: 1. 1-year populations for binary black hole (BBH), binary neutron star (BNS), neutron star-black hole (NSBH), intermediate mass binary black hole (IMBBH), Population III (Pop 3) binary black holes and primordial black hole (PBH) mergers. It also contains the SNRs and measurement errors on intrinsic and extrinsic parameters calculated using gwbench3. 2. 1/4-year sub-population of BNS mergers for which errors on tidal parameters were calculated. 3. An ipython notebook (instructions.ipynb) that shows how the data can be used. References: 1. Evans, Matthew et al. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee (2023). arXiv: 2306.13745 [gr-qc]. 2. Gupta, Ish et al. Characterizing Gravitational Wave Detector Networks: From A# to Cosmic Explorer (2023). In preparation. 3. Borhanian, Ssohrab. GWBENCH: a novel Fisher information package for gravitational-wave benchmarking. Class. Quant. Grav. 38, 175014 (2021). arXiv: 2010.15202 [gr-qc].more » « less
-
ABSTRACT Searches for gravitational waves from compact binary mergers, which to date have reported ∼100 observations, have previously ignored binaries whose components are consistent with the mass of neutron stars (1–2 M⊙) and have high dimensionless spin >0.05. While previous searches targeted sources that are representative of observed neutron star binaries in the Galaxy, it is already known that neutron stars can regularly be spun up to a dimensionless spin of ∼0.4, and in principle reach up to ∼0.7 before breakup would occur. Furthermore, there may be primordial black hole binaries or exotic formation mechanisms to produce light black holes. In these cases, it is possible for the binary constituent to be spun up beyond that achievable by a neutron star. A single detection of this type of source would reveal a novel formation channel for compact binaries. To determine whether there is evidence for any such sources, we use pycbc to conduct a targeted search of LIGO and Virgo data for light compact objects with high spin. Our analysis detects previously known observations GW170817 and GW200115; however, we report no additional mergers. The most significant candidate, not previously known, is consistent with the noise distribution, and so we constrain the merger rate of spinning light binaries.more » « less
-
ABSTRACT Precursors have been observed seconds to minutes before some short gamma-ray bursts. While the precursor origins remain unknown, one explanation relies on the resonance of neutron star pulsational modes with the tidal forces during the inspiral phase of a compact binary merger. In this paper, we present a model for short gamma-ray burst precursors that relies on tidally resonant neutron star oceans. In this scenario, the onset of tidal resonance in the crust–ocean interface mode ignites the precursor flare, possibly through the interaction between the excited neutron star ocean and the surface magnetic fields. From just the precursor total energy, the time before the main event, and a detected quasi-periodic oscillation frequency, we may constrain the binary parameters and neutron star ocean properties. Our model can immediately distinguish neutron star–black hole mergers from binary neutron star mergers without gravitational wave detection. We apply our model to GRB 211211A, the recently detected long duration short gamma-ray burst with a quasi-periodic precursor, and explore the parameters of this system. The precursor of GRB 211211A is consistent with a tidally resonant neutron star ocean explanation that requires an extreme mass ratio neutron star–black hole merger and a high-mass neutron star. While difficult to reconcile with the main gamma-ray burst and associated kilonova, our results constrain the possible precursor mechanisms in this system. A systematic study of short gamma-ray burst precursors with the model presented here can test precursor origin and probe the possible connection between gamma-ray bursts and neutron star–black hole mergers.more » « less
-
Abstract We report the observation of a coalescing compact binary with component masses 2.5–4.5M⊙and 1.2–2.0M⊙(all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5M⊙at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap.more » « less