skip to main content


This content will become publicly available on May 1, 2024

Title: Plasmoid Instability in the Multiphase Interstellar Medium
Abstract The processes controlling the complex clump structure, phase distribution, and magnetic field geometry that develop across a broad range of scales in the turbulent interstellar medium (ISM) remain unclear. Using unprecedentedly high-resolution 3D magnetohydrodynamic simulations of thermally unstable turbulent systems, we show that large current sheets unstable to plasmoid-mediated reconnection form regularly throughout the volume. The plasmoids form in three distinct environments: (i) within cold clumps, (ii) at the asymmetric interface of the cold and warm phases, and (iii) within the warm, volume-filling phase. We then show that the complex magnetothermal phase structure is characterized by a predominantly highly magnetized cold phase, but that regions of high magnetic curvature, which are the sites of reconnection, span a broad range in temperature. Furthermore, we show that thermal instabilities change the scale-dependent anisotropy of the turbulent magnetic field, reducing the increase in eddy elongation at smaller scales. Finally, we show that most of the mass is contained in one contiguous cold structure surrounded by smaller clumps that follow a scale-free mass distribution. These clumps tend to be highly elongated and exhibit a size versus internal velocity relation consistent with supersonic turbulence and a relative clump distance–velocity scaling consistent with subsonic motion. We discuss the striking similarity of cold plasmoids to observed tiny-scale atomic and ionized structures and H i fibers and consider how the presence of plasmoids will modify the motion of charged particles, thereby impacting cosmic-ray transport and thermal conduction in the ISM and other similar systems.  more » « less
Award ID(s):
2206610 2206607
NSF-PAR ID:
10451494
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
949
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Atomic gas in the diffuse interstellar medium (ISM) is organized in filamentary structures. These structures usually host cold and dense molecular clumps. The Galactic magnetic field is considered to play an important role in the formation of these clumps. Aims. Our goal is to explore the role of the magnetic field in the H I -H 2 transition process. Methods. We targeted a diffuse ISM filamentary cloud toward the Ursa Major cirrus where gas transitions from atomic to molecular. We probed the magnetic field properties of the cloud with optical polarization observations. We performed multiwavelength spectroscopic observations of different species in order to probe the gas phase properties of the cloud. We observed the CO ( J = 1−0) and ( J = 2−1) lines in order to probe the molecular content of the cloud. We also obtained observations of the [C ii ] 157.6 µ m emission line in order to trace the CO-dark H 2 gas and estimate the mean volume density of the cloud. Results. We identified two distinct subregions within the cloud. One of the regions is mostly atomic, while the other is dominated by molecular gas, although most of it is CO-dark. The estimated plane-of-the-sky magnetic field strength between the two regions remains constant within uncertainties and lies in the range 13–30 µG. The total magnetic field strength does not scale with density. This implies that gas is compressed along the field lines. We also found that turbulence is trans-Alfvénic, with M A ≈ 1. In the molecular region, we detected an asymmetric CO clump whose minor axis is closer, with a 24° deviation, to the mean magnetic field orientation than the angle of its major axis. The H i velocity gradients are in general perpendicular to the mean magnetic field orientation except for the region close to the CO clump, where they tend to become parallel. This phenomenon is likely related to gas undergoing gravitational infall. The magnetic field morphology of the target cloud is parallel to the H i column density structure of the cloud in the atomic region, while it tends to become perpendicular to the H i structure in the molecular region. On the other hand, the magnetic field morphology seems to form a smaller offset angle with the total column density shape (including both atomic and molecular gas) of this transition cloud. Conclusions. In the target cloud where the H i –H 2 transition takes place, turbulence is trans-Alfvénic, and hence the magnetic field plays an important role in the cloud dynamics. Atomic gas probably accumulates preferentially along the magnetic field lines and creates overdensities where molecular gas can form. The magnetic field morphology is probed better by the total column density shape of the cloud, and not its H i column density shape. 
    more » « less
  2. ABSTRACT

    Astrophysical gases are commonly multiphase and highly turbulent. In this work, we investigate the survival and growth of cold gas in such a turbulent, multiphase medium using three-dimensional hydrodynamical simulations. Similar to previous work simulating coherent flow (winds), we find that cold gas survives if the cooling time of the mixed gas is shorter than the Kelvin–Helmholtz time of the cold gas clump (with some weak additional Mach number dependence). However, there are important differences. Near the survival threshold, the long-term evolution is highly stochastic, and subject to the existence of sufficiently large clumps. In a turbulent flow, the cold gas continuously fragments, enhancing its surface area. This leads to exponential mass growth, with a growth time given by the geometric mean of the cooling and the mixing time. The fragmentation process leads to a large number of small droplets which follow a scale-free dN/dm ∝ m−2 mass distribution, and dominate the area covering fraction. Thus, whilst survival depends on the presence of large ‘clouds’, these in turn produce a ‘fog’ of smaller droplets tightly coupled to the hot phase which are probed by absorption line spectroscopy. We show with the aid of Monte Carlo simulations that the simulated mass distribution emerges naturally due to the proportional mass growth and the coagulation of droplets. We discuss the implications of our results for convergence criteria of larger scale simulations and observations of the circumgalactic medium.

     
    more » « less
  3. ABSTRACT

    Cosmic rays (CRs) with energies ≪ TeV comprise a significant component of the interstellar medium (ISM). Major uncertainties in CR behaviour on observable scales (much larger than CR gyroradii) stem from how magnetic fluctuations scatter CRs in pitch angle. Traditional first-principles models, which assume these magnetic fluctuations are weak and uniformly scatter CRs in a homogeneous ISM, struggle to reproduce basic observables such as the dependence of CR residence times and scattering rates on rigidity. We therefore explore a new category of ‘patchy’ CR scattering models, wherein CRs are pre-dominantly scattered by intermittent strong scattering structures with small volume-filling factors. These models produce the observed rigidity dependence with a simple size distribution constraint, such that larger scattering structures are rarer but can scatter a wider range of CR energies. To reproduce the empirically inferred CR scattering rates, the mean free path between scattering structures must be $\ell _{\rm mfp}\sim 10\, {\rm pc}$ at GeV energies. We derive constraints on the sizes, internal properties, mass/volume-filling factors, and the number density any such structures would need to be both physically and observationally consistent. We consider a range of candidate structures, both large scale (e.g. H ii regions) and small scale (e.g. intermittent turbulent structures, perhaps even associated with radio plasma scattering) and show that while many macroscopic candidates can be immediately ruled out as the primary CR scattering sites, many smaller structures remain viable and merit further theoretical study. We discuss future observational constraints that could test these models.

     
    more » « less
  4. ABSTRACT

    Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to active galactic nucleus outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation from hotter phases. We obtain the analytical solution for a steady pressure-driven 1D cooling flow around cold, local overdensities, irrespective of their origin. Our solutions describe the slow and steady radiative cooling-driven gas inflow in the saturated regime of non-linear thermal instability in clouds, sheets, and filaments. Such a cooling flow develops when the gas around small clumps undergoes radiative cooling. These small-scale, cold ‘seeds’ are embedded in a large volume-filling hot CGM maintained by feedback. We use a simple two-fluid treatment to include magnetic fields as an additional polytropic fluid. To test the limits of applicability of these analytical solutions, we compare with the gas structure found in and around small-scale cold clouds in the CGM of massive haloes in the TNG50 cosmological magnetohydrodynamic simulation from the IllustrisTNG suite. Despite qualitative resemblance of the gas structure, we find deviations from steady-state profiles generated by our model. Complex geometries and turbulence all add complexity beyond our analytical solutions. We derive an exact relation between the mass cooling rate ($\dot{\rm M}_{\rm cool}$) and the radiative cooling rate ($\dot{\rm E}_{\rm cool}$) for a steady cooling flow. A comparison with the TNG50 clouds shows that this cooling flow relation only applies in a narrow temperature range around $\rm \sim 10^{4.5}$ K where the isobaric cooling time is the shortest. In general, turbulence and mixing, instead of radiative cooling, may dominate the transition of gas between different temperature phases.

     
    more » « less
  5. null (Ed.)
    ABSTRACT Active galactic nuclei (AGNs) feedback is responsible for maintaining plasma in global thermal balance in extended haloes of elliptical galaxies and galaxy clusters. Local thermal instability in the hot gas leads to the formation of precipitating cold gas clouds that feed the central supermassive black holes, thus heating the hot gas and maintaining global thermal equilibrium. We perform 3D magnetohydrodynamical (MHD) simulations of self-regulated AGNs feedback in a Perseus-like galaxy cluster with the aim of understanding the impact of the feedback physics on the turbulence properties of the hot and cold phases of the intracluster medium (ICM). We find that, in general, the cold phase velocity structure function (VSF) is steeper than the prediction from Kolmogorov’s theory. We attribute the physical origin of the steeper slope of the cold phase VSF to the driving of turbulent motions primarily by the gravitational acceleration acting on the ballistic clouds. We demonstrate that, in the pure hydrodynamical case, the precipitating cold filaments may be the dominant agent driving turbulence in the hot ICM. The arguments in favour of this hypothesis are that: (i) the cold phase mass dominates over hot gas mass in the inner cool core; (ii) hot and cold gas velocities are spatially correlated; (iii) both the cold and hot phase velocity distributions are radially biased. We show that, in the MHD case, the turbulence in the ambient hot medium (excluding the jet cone regions) can also be driven by the AGN jets. The driving is then facilitated by enhanced coupling due to magnetic fields of the ambient gas and the AGN jets. In the MHD case, turbulence may thus be driven by a combination of AGN jet stirring and filament motions. We conclude that future observations, including those from high spatial and spectral resolution X-ray missions, may help to constrain self-regulated AGN feedback by quantifying the multitemperature VSF in the ICM. 
    more » « less