skip to main content


Title: Stabilizing Effect of High Pore Fluid Pressure on Slip Behaviors of Gouge‐bearing Faults
Abstract

We conducted experiments to investigate the influence of pore fluid pressure on the frictional strength and slip behavior of gouge bearing faults. Saw cut porous sandstone samples with a layer of gouge powders placed between the precut surfaces were deformed in the conventional triaxial loading configuration. A series of velocity‐step tests were performed to measure the response of the friction coefficient to variations in sliding velocity. Pore volume changes were monitored during shearing of the gouge. Our results demonstrate that under constant effective pressure, increasing pore pressure stabilizes the frictional slip of faults with all four gouge materials including antigorite, olivine, quartz, and chrysotile. The stabilizing effect is the strongest in antigorite gouge, which shows an evolution of friction parameters from velocity‐weakening toward velocity‐strengthening behavior with increasing pore pressure. Experiments with controlled pore volume show that the pore volume reduction diminishes under high pore fluid pressures, implying an increasing dilation component at these conditions. The dilatant hardening mechanism can explain the observed strengthening. These results provide a possible explanation to the observed spatial correlation between slow slip events and high pore pressure in many subduction zones.

 
more » « less
NSF-PAR ID:
10451592
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
124
Issue:
9
ISSN:
2169-9313
Page Range / eLocation ID:
p. 9526-9545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure‐solution creep, and crack sealing, explains the low‐temperature stability transition from steady‐state velocity‐strengthening to velocity‐weakening as a function of slip‐rate and temperature. In addition, capturing the transition from cataclastic flow to semi‐brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions.

     
    more » « less
  2. Abstract

    Subduction megathrusts exhibit a spectrum of slip modes, including catastrophic earthquakes. Although the mechanical and frictional properties of materials sampled from subduction zones have been studied extensively, few datasets have been collected for compositions and at pressure and temperature conditions representative of those in situ. The Nankai subduction zone in southwest Japan is a well‐studied margin, and abundant data provide an opportunity to advance our understanding of fault and earthquake physics. Here, we use samples exhumed in the Shimanto and Sanbagawa Belts on Shikoku Island of southwest Japan that represent analogs for materials along the present‐day megathrust at depths of ∼5–>25 km, and we shear these at their peak in situ pressure‐temperature (P‐T) conditions. Effective normal stresses range from 28 to 192 MPa, and temperatures from 105°C to 470°C. We used pore fluid pressures of 45–240 MPa, corresponding to fluid overpressure ratiosλof 0.65 and 0.90. Slip velocities of 0.1–100 μm/s were used, in order to focus on the nucleation of instability and earthquakes. We found predominantly velocity‐strengthening (inherently stable) behavior under all conditions forλ = 0.65. Forλ = 0.90, velocity‐weakening behavior was observed at 350°C, with velocity‐strengthening behavior at lower and higher temperatures. The rate/state frictional stability parameter (ab) increases with slip velocity at temperatures up to ∼200°C and remains constant or decreases with slip velocity at higher temperatures. Overall, our results demonstrate the potentially important roles of both temperature and slip velocity in controlling the distribution of stress and frictional rheology along subduction thrusts.

     
    more » « less
  3. Abstract

    Like faults, landslides can slip slowly for decades or accelerate catastrophically. However, whereas experimentally derived friction laws provide mechanistically based explanations for similarly diverse behavior on faults, little monitoring exists over the temporal and spatial scales required to more clearly illuminate the mechanics of landslide friction. Here we show that displacement of an active slow landslide is accommodated primarily through mm‐scale stick‐slip events that recur on timescales of minutes to hours on asperities that are small (<100 m) relative to the landslide. The frequency of slip events tracks both landslide velocity and pore fluid pressure. The stick‐slip nature demonstrates by itself that slow slip is governed, at least in part, by velocity‐weakening frictional asperities. This observation, in combination with the sensitivity of slow slip to pore fluid pressure and the small relative scale of asperities, suggests similarities between slow slip in landslides and episodic slow slip along faults.

     
    more » « less
  4. Abstract

    Rate‐ and state‐dependent friction (RSF) equations are commonly used to describe the time‐dependent frictional response of fault gouge to perturbations in sliding velocity. Among the better‐known versions are the Aging and Slip laws for the evolution of state. Although the Slip law is more successful, neither can predict all the robust features of lab data. RSF laws are also empirical, and their micromechanical origin is a matter of much debate. Here we use a granular physics‐based model to explore the extent to which RSF behavior, as observed in rock and gouge friction experiments, can be explained by the response of a granular gouge layer with time‐independent properties at the contact scale. We examine slip histories for which abundant lab data are available and find that the granular model (1) mimics the Slip law for those loading protocols where the Slip law accurately models laboratory data (velocity‐step and slide‐hold tests) and (2) deviates from the Slip law under conditions where the Slip law fails to match laboratory data (the reslide portions of slide‐hold‐slide tests), in the proper sense to better match those data. The simulations also indicate that state is sometimes decoupled from porosity in a way that is inconsistent with traditional interpretations of “state” in RSF. Finally, if the “granular temperature” of the gouge is suitably normalized by the confining pressure, it produces an estimate of the direct velocity effect (the RSF parametera) that is consistent with our simulations and in the ballpark of lab  data.

     
    more » « less
  5. Abstract

    The constitutive behavior of faults is central to many interconnected aspects of earthquake science, from fault dynamics to induced seismicity, to seismic hazards characterization. Yet, a friction law applicable to the range of temperatures found in the brittle crust and upper mantle is still missing. In particular, rocks often exhibit a transition from steady‐state velocity‐strengthening at room temperature to velocity‐weakening in warmer conditions that is poorly understood. Here, we investigate the effect of competing healing mechanisms on the evolution of frictional resistance in a physical model of rate‐, state‐, and temperature‐dependent friction. The yield strength for fault slip depends on the real area of contact, which is modulated by the competition between the growth and erosion of interfacial micro‐asperities. Incorporating multiple healing mechanisms and rock‐forming minerals with different thermodynamic properties allows a transition of the velocity‐ and temperature‐dependence of friction at steady‐state with varying temperatures. We explain the mechanical data for granite, pyroxene, amphibole, shale, and natural fault gouges with activation energies and stress power exponent for weakening of 10–50 kJ/mol and 55–150, respectively, compatible with subcritical crack growth and inter‐granular flow in the active slip zone. Activation energies for the time‐dependent healing process in the range 90–130 kJ/mol in dry conditions and 20–65 kJ/mol in wet conditions indicate the prominence of viscoelastic collapse of microasperities in the absence of water and of pressure‐solution creep, crack healing, and cementation when assisted by pore fluids.

     
    more » « less