skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Amplification of pathogenic Leptospira infection with greater abundance and co‐occurrence of rodent hosts across a counter‐urbanizing landscape
Abstract

Land use change can elevate disease risk by creating conditions beneficial to species that carry zoonotic pathogens. Observations of concordant global trends in increased pathogen prevalence or disease incidence and landscape change have generated concerns that urbanization could increase transmission risk of some pathogens. Yet host–pathogen relationships underlying transmission risk have not been well characterized within cities, even where contact between humans and species capable of transmitting pathogens of concern occurs. We addressed this deficit by testing the hypothesis that areas in cities experiencing greater population loss and infrastructure decline (i.e., counter‐urbanization) can support a greater diversity of host species and a larger and more diverse pool of pathogens. We did so by characterizing pathogenicLeptospirainfection relative to rodent host richness and abundance across a mosaic of abandonment in post‐Katrina New Orleans (Louisiana, USA). We found thatLeptospirainfection loads were highest in areas that harboured increased rodent species richness (which ranged from one to four rodent species detected). Areas with greater host co‐occurrence also harboured a greater abundance of hosts, including the host species most likely to carry high infection loads, indicating thatLeptospirainfection can be amplified by increases in overall and relative host abundance. Evidence of shared infection among rodent host species indicates that cross‐species transmission ofLeptospiraprobably increases infection at sites with greater host richness. Additionally, evidence that rodent co‐occurrence and abundance andLeptospirainfection load parallel abandonment suggests that counter‐urbanization can elevate zoonotic disease risk within cities, particularly in underserved communities that are burdened with disproportionate concentrations of derelict properties.

 
more » « less
NSF-PAR ID:
10451677
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
30
Issue:
9
ISSN:
0962-1083
Format(s):
Medium: X Size: p. 2145-2161
Size(s):
p. 2145-2161
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross‐species spillover transmission. Using a rodent–ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent–ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high‐consequence zoonotic pathogen with documented animal‐to‐animal, animal‐to‐human, and human‐to‐human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus.

     
    more » « less
  2. null (Ed.)
    Anticoagulant rodenticides (ARs) deployed to control rodent pest populations can increase the risk of pathogen infection for some wildlife. However, it is unknown whether ARs also increase infection risk for target rodents, which are common hosts for zoonotic (animal-to-human transmitted) pathogens. In this study, we tested whether rats exposed to ARs were more likely to be infected with zoonotic pathogens, specifically Leptospira spp. or Escherichia coli , after controlling for known predictors of infection (i.e. sex, age, body condition). We collected biological samples from 99 rats trapped in Chicago alleys and tested these for Leptospira infection, E. coli shedding and AR exposure. We found that rats that had been exposed to ARs and survived until the time of trapping, as well as older rats, were significantly more likely to be infected with Leptospira spp. than other rats. We found no significant association between E. coli shedding and any predictors. Our results show that human actions to manage rats can affect rat disease ecology and public health risks in unintended ways, and more broadly, contribute to a growing awareness of bidirectional relationships between humans and natural systems in cities. 
    more » « less
  3. Abstract

    Rodents are key reservoirs of zoonotic pathogens and play an important role in disease transmission to humans. Importantly, anthropogenic land‐use change has been found to increase the abundance of rodents that thrive in human‐built environments (synanthropic rodents), particularly rodent reservoirs of zoonotic disease. Anthropogenic environments also affect the microbiome of synanthropic wildlife, influencing wildlife health and potentially introducing novel pathogens. Our objective was to examine the effect of agricultural development and synanthropic habitat on microbiome diversity and the prevalence of zoonotic bacterial pathogens in wildPeromyscusmice to better understand the role of these rodents in pathogen maintenance and transmission. We conducted 16S amplicon sequencing on faecal samples using long‐read nanopore sequencing technology to characterize the rodent microbiome. We compared microbiome diversity and composition between forest and synanthropic habitats in agricultural and undeveloped landscapes and screened for putative pathogenic bacteria. Microbiome richness, diversity, and evenness were higher in the agricultural landscape and synanthropic habitat compared to undeveloped‐forest habitat. Microbiome composition also differed significantly between agricultural and undeveloped landscapes and forest and synanthropic habitats. We detected overall low diversity and abundance of putative pathogenic bacteria, though putative pathogens were more likely to be found in mice from the agricultural landscape. Our findings show that landscape‐ and habitat‐level anthropogenic factors affectPeromyscusmicrobiomes and suggest that landscape‐level agricultural development may be important to predict zoonotic pathogen prevalence. Ultimately, understanding how anthropogenic land‐use change and synanthropy affect rodent microbiomes and pathogen prevalence is important to managing transmission of rodent‐borne zoonotic diseases to humans.

     
    more » « less
  4. Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co- infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dy- namics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and hel- minths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro- parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associ- ated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co- infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance. 
    more » « less
  5. Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change. 
    more » « less