(TSFAM) model, an adaptive human-AI teaming framework designed to enhance hard-to-place kidney acceptance decision-making by integrating transplant surgeons’ individualized expertise with advanced AI analytics (Figure 1). Methods: TSFAM is an innovative solution for complex issues in kidney transplant decision-making support. It employs fuzzy associative memory to capture and codify unique decision-making rules of transplant surgeons. Using the Deceased Donor Organ Assessment (DDOA) and Final Acceptance AI models designed to evaluate hard-to-place kidneys, TSFAM integrates fuzzy logic with deep learning techniques to manage inherent uncertainties in donor organ assessments. Surgeon-specifi c ontologies and membership functions are extracted through interviews. Similar to how a pain scale is used for understanding patients, an ontology ambiguity scale is used to develop surgeon rules (Figure 2). Fuzzy logic captures ambiguity and enables the model to adapt to evolving clinical, environmental, and policy conditions. The structured incorporation of human expertise ensures decision support remains closely aligned with local clinical practices and global best evidence. Results: This novel framework incorporates human expertise into AI decisionmaking tools to support donor organ acceptance in transplantation. Integrating surgeon-defi ned criteria into a robust decision-support tool enhances accuracy and transparency of organ allocation decision-making support. TSFAM bridges the gap between data-driven models and nuanced judgment required in complex clinical scenarios, fostering trust and promoting responsible AI adoption. Conclusions: TSFAM fuses deep learning analytics with subtleties of human expertise for a promising pathway to improve decision-making support in transplant surgery. The framework enhances clinical assessment and sets a precedent for future systems prioritizing human-AI collaboration. Prospective studies will focus on clinical implementation with dynamic interfaces for a more patient-centered, evidencebased model in organ transplantation. The intent is for this approach to be adaptable to individual case scenarios and the diverse needs of key transplant team members
more »
« less
A Framework for Objective Evaluation of Handheld Robotic Surgical Tools Against Patient Needs
Surgeons are human: their best possible performance is limited by their neurophysiology. What if an inoperable patient’s condition demands surgical treatment that exceeds such human performance limits? Can precision surgical robots help surgeons surpass such fundamental human neurophysiological limits? This article employs the Steering law to proposes a quantitative framework and benchmark tasks to evaluate the feasibility of a handheld surgical tool for meeting the quantified speed and accuracy requirements of a clinical need in non-contact interactions that exceed human limitations. Example use cases of such interactions in common surgical scenarios are presented. Preliminary results from a straight-line tracking task with and without computer assistance demonstrate the proposed framework in the context of falling short of a clinical speed/accuracy need. The framework is then used to articulate specifications for additional technology candidates to successfully exceed the speed and accuracy characteristics of the modality used.
more »
« less
- Award ID(s):
- 1847610
- PAR ID:
- 10451847
- Date Published:
- Journal Name:
- 2022 Design of Medical Devices Conference
- Volume:
- DMD2022-1039
- Page Range / eLocation ID:
- V001T07A003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Robotic surgical subtask automation has the potential to reduce the per-patient workload of human surgeons. There are a variety of surgical subtasks that require geometric information of subsurface anatomy, such as the location of tumors, which necessitates accurate and efficient surgical sensing. In this work, we propose an automated sensing method that maps 3D subsurface anatomy to provide such geometric knowledge. We model the anatomy via a Bayesian Hilbert map-based probabilistic 3D occupancy map. Using the 3D occupancy map, we plan sensing paths on the surface of the anatomy via a graph search algorithm, A * search, with a cost function that enables the trajectories generated to balance between exploration of unsensed regions and refining the existing probabilistic understanding. We demonstrate the performance of our proposed method by comparing it against 3 different methods in several anatomical environments including a real-life CT scan dataset. The experimental results show that our method efficiently detects relevant subsurface anatomy with shorter trajectories than the comparison methods, and the resulting occupancy map achieves high accuracy.more » « less
-
Current commercially available robotic minimally invasive surgery (RMIS) platforms provide no haptic feedback of tool interactions with the surgical environment. As a consequence, novice robotic surgeons must rely exclusively on visual feedback to sense their physical interactions with the surgical environment. This technical limitation can make it challenging and time-consuming to train novice surgeons to proficiency in RMIS. Extensive prior research has demonstrated that incorporating haptic feedback is effective at improving surgical training task performance. However, few studies have investigated the utility of providing feedback of multiple modalities of haptic feedback simultaneously (multi-modality haptic feedback) in this context, and these studies have presented mixed results regarding its efficacy. Furthermore, the inability to generalize and compare these mixed results has limited our ability to understand why they can vary significantly between studies. Therefore, we have developed a generalized, modular multi-modality haptic feedback and data acquisition framework leveraging the real-time data acquisition and streaming capabilities of the Robot Operating System (ROS). In our preliminary study using this system, participants complete a peg transfer task using a da Vinci robot while receiving haptic feedback of applied forces, contact accelerations, or both via custom wrist-worn haptic devices. Results highlight the capability of our system in running systematic comparisons between various single and dual-modality haptic feedback approaches.more » « less
-
This paper describes a framework allowing intraoperative photoacoustic (PA) imaging integrated into minimally invasive surgical systems. PA is an emerging imaging modality that combines the high penetration of ultrasound (US) imaging with high optical contrast. With PA imaging, a surgical robot can provide intraoperative neurovascular guidance to the operating physician, alerting them of the presence of vital substrate anatomy invisible to the naked eye, preventing complications such as hemorrhage and paralysis. Our proposed framework is designed to work with the da Vinci surgical system: real-time PA images produced by the framework are superimposed on the endoscopic video feed with an augmented reality overlay, thus enabling intuitive three-dimensional localization of critical anatomy. To evaluate the accuracy of the proposed framework, we first conducted experimental studies in a phantom with known geometry, which revealed a volumetric reconstruction error of 1.20 ± 0.71 mm. We also conducted anex vivostudy by embedding blood-filled tubes into chicken breast, demonstrating the successful real-time PA-augmented vessel visualization onto the endoscopic view. These results suggest that the proposed framework could provide anatomical and functional feedback to surgeons and it has the potential to be incorporated into robot-assisted minimally invasive surgical procedures.more » « less
-
Surgical pathology reports contain essential diagnostic information, in free-text form, required for cancer staging, treatment planning, and cancer registry documentation. However, their unstructured nature and variability across tumor types and institutions pose challenges for automated data extraction. We present a consensus-driven, reasoning-based framework that uses multiple locally deployed large language models (LLMs) to extract six key diagnostic variables: site, laterality, histology, stage, grade, and behavior. Each LLM produces structured outputs with accompanying justifications, which are evaluated for accuracy and coherence by a separate reasoning model. Final consensus values are determined through aggregation, and expert validation is conducted by board-certified or equivalent pathologists. The framework was applied to over 4,000 pathology reports from The Cancer Genome Atlas (TCGA) and Moffitt Cancer Center. Expert review confirmed high agreement in the TCGA dataset for behavior (100.0%), histology (98.5%), site (95.2%), and grade (95.6%), with lower performance for stage (87.6%) and laterality (84.8%). In the pathology reports from Moffitt (brain, breast, and lung), accuracy remained high across variables, with histology (95.6%), behavior (98.3%), and stage (92.4%), achieving strong agreement. However, certain challenges emerged, such as inconsistent mention of sentinel lymph node details or anatomical ambiguity in biopsy site interpretations. Statistical analyses revealed significant main effects of model type, variable, and organ system, as well as model × variable × organ interactions, emphasizing the role of clinical context in model performance. These results highlight the importance of stratified, multi-organ evaluation frameworks in LLM benchmarking for clinical applications. Textual justifications enhanced interpretability and enabled human reviewers to audit model outputs. Overall, this consensus-based approach demonstrates that locally deployed LLMs can provide a transparent, accurate, and auditable solution for integrating AI-driven data extraction into real-world pathology workflows, including cancer registry abstraction and synoptic reporting.more » « less
An official website of the United States government

