Summary Recent studies on fine root functional traits proposed a root economics hypothesis where adaptations associated with mycorrhizal dependency strongly influence the organization of root traits, forming a dominant axis of trait covariation unique to roots. This conclusion, however, is based on tradeoffs of a few widely studied root traits. It is unknown how other functional traits fit into this mycorrhizal‐collaboration gradient. Here, we provide a significant extension to the field of root ecology by examining how fine root secondary compounds coordinate with other root traits.We analyzed a dataset integrating compound‐specific chemistry, morphology and anatomy of fine roots and leaves from 34 temperate tree species spanning major angiosperm lineages.Our data uncovered previously undocumented coordination where root chemistry, morphology and anatomy covary with each other. This coordination, aligned with mycorrhizal colonization, reflects tradeoffs between chemical protection and mycorrhizal dependency, and provides mechanistic support for the mycorrhizal‐collaboration gradient. We also found remarkable phylogenetic structuring in root chemistry. These patterns were not mirrored by leaves. Furthermore, chemical protection was largely decoupled from the leaf economics spectrum.Our results unveil broad organization of root chemistry, demonstrate unique belowground adaptions, and suggest that root strategies and phylogeny could impact biogeochemical cycles through their links with root chemistry.
more »
« less
Incorporating belowground traits: avenues towards a whole‐tree perspective on performance
Tree performance depends on the coordinated functioning of interdependent leaves, stems and (mycorrhizal) roots. Integrating plant organs and their traits, therefore, provides a more complete understanding of tree performance than studying organs in isolation. Until recently, our limited understanding of root traits impeded such a whole‐tree perspective on performance, but recent developments in root ecology provide new impetuses for integrating the below‐ and aboveground. Here, we identify two key avenues to further develop a whole‐tree perspective on performance and highlight the conceptual and practical challenges and opportunities involved in including the belowground. First, traits of individual roots need to be scaled up to the root system as a whole to determine belowground functioning, e.g. total soil water and nutrient uptake, and hence performance. Second, above‐ and belowground plant organs need to be mechanistically connected to account for how they functionally interact and to investigate their combined impacts on tree performance. We further identify mycorrhizal symbiosis as the next frontier and emphasize several courses of actions to incorporate these symbionts in whole‐tree frameworks. By scaling up and mechanistically integrating (mycorrhizal) roots as argued here, the belowground can be better represented in whole‐tree conceptual and mechanistic models; ultimately, this will improve our estimates of not only the functioning and performance of individual trees, but also the processes and responses to environmental change of the communities and ecosystems they are part of.
more »
« less
- Award ID(s):
- 2016678
- PAR ID:
- 10451868
- Date Published:
- Journal Name:
- Oikos
- Volume:
- 2023
- Issue:
- 1
- ISSN:
- 0030-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional “root econom- ics space” synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data includ- ing 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reli- ance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.more » « less
-
PremiseBelowground functional traits play a significant role in determining plant water‐use strategies and plant performance, but we lack data on root traits across communities, particularly in the tropical savanna biome, where vegetation dynamics are hypothesized to be strongly driven by tree–grass functional differences in water use. MethodsWe grew seedlings of 21 tree and 18 grass species (N= 5 individuals per species) from the southern African savanna biome under greenhouse conditions and collected fine‐root segments from plants for histological analysis. We identified and measured xylem vessels in 539 individual root cross sections. We then quantified six root vascular anatomy traits and tested them for phylogenetic signals and tree–grass differences in trait values associated with vessel size, number, and hydraulic conductivity. ResultsGrass roots had larger root xylem vessels than trees, a higher proportion of their root cross‐sectional area comprised vessels, and they had higher estimated axial conductivities than trees, while trees had a higher number of vessels per root cross‐sectional area than grasses did. We found evidence of associations between trait values and phylogenetic relatedness in most of these traits across tree species, but not grasses. ConclusionsOur findings support the hypothesis that grass roots have higher water transport capacity than tree roots in terms of maximum axial conductivity, consistent with the observation that grasses are more “aggressive” water users than trees under conditions of high soil moisture availability. Our study identifies root functional traits that may drive differential responses of trees and grasses to soil moisture availability.more » « less
-
Abstract Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground.more » « less
-
Abstract The vast majority of measurements in the field of plant hydraulics have been on small‐diameter branches from woody species. These measurements have provided considerable insight into plant functioning, but our understanding of plant physiology and ecology would benefit from a broader view, because branch hydraulic properties are influenced by many factors. Here, we discuss the influence that other components of the hydraulic network have on branch vulnerability to embolism propagation. We also modelled the impact of changes in the ratio of root‐to‐leaf areas and soil texture on vulnerability to hydraulic failure along the soil‐to‐leaf continuum and showed that hydraulic function is better maintained through changes in root vulnerability and root‐to‐leaf area ratio than in branch vulnerability. Differences among species in the stringency with which they regulate leaf water potential and in reliance on stored water to buffer changes in water potential also affect the need to construct embolism resistant branches. Many approaches, such as measurements on fine roots, small individuals, combining sap flow and psychrometry techniques, and modelling efforts, could vastly improve our understanding of whole‐plant hydraulic functioning. A better understanding of how traits are coordinated across the whole plant will improve predictions for plant function under future climate conditions.more » « less
An official website of the United States government

