skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of the solvent on the conformation of monocrotaline as determined by isotropic and anisotropic NMR parameters
Abstract The conformation in solution of monocrotaline, a pyrrolizidine alkaloid presenting an eleven‐membered macrocyclic diester ring, has been investigated using a combination of isotropic and anisotropic nuclear magnetic resonance parameters measured in four solvents of different polarity (D2O, DMSO‐d6, CDCl3, and C6D6). Anisotropic nuclear magnetic resonance parameters were measured in different alignment media, based on their compatibility with the solvent of interest: cromoglycate liquid crystal solution was used for D2O, whereas a poly (methyl methacrylate) polymer gel was chosen for CDCl3and C6D6, and a poly (hydroxyethyl methacrylate) gel for DMSO‐d6. Whereas the pyrrolizidine ring shows anE6exo‐puckered conformation in all of the solvents, the macrocyclic eleven‐membered ring adopts different populations ofsyn‐parallel andanti‐parallel relative orientation of the carbonyl groups according to the polarity of the solvent.  more » « less
Award ID(s):
1726525
PAR ID:
10451985
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Magnetic Resonance in Chemistry
Volume:
59
Issue:
5
ISSN:
0749-1581
Format(s):
Medium: X Size: p. 561-568
Size(s):
p. 561-568
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract DMSO, an interesting solvent for copper‐catalyzed living radical polymerization (LRP) mediated by disproportionation, does not exhibit the greatest disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Under suitable conditions, DMSO provides 100% conversion and absence of termination, facilitating the development of complex‐architecture methodologies by living and immortal polymerizations. The mechanism yielding this level of precision is being investigated. Here we compare Cu(0)‐wire‐catalyzed LRP of methyl acrylate mediated by disproportionating ligands tris(2‐dimethylaminoethyl)amine, Me6‐TREN, tris(2‐aminoethyl)amine, TREN, and Me6‐TREN/TREN = 1/1 in presence of eight disproportionating solvents, some more efficient than DMSO in disproportionation. Unexpectedly, we observed that all solvents increased the rate of polymerization when monomer concentration decreased. This reversed trend from that of conventional LRPs demonstrates catalytic effect for disproportionating solvents. Above a certain concentration, the classic concentration‐rate dependence was observed. The external order of reaction of the apparent rate constant of propagation,kpappon solvent concentration demonstrated the highest order of reaction for the least disproportionating DMSO. Of all solvents investigated, DMSO has the highest ability to stabilize Cu(0) nanoparticles and therefore, yields the highest activity of Cu(0) nanoparticles rather than their greatest concentration. The implications of the catalytic effect of solvent in this and other reactions were discussed. 
    more » « less
  2. The structures of three racemic (tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl)methanol derivatives are reported, namely, 4-[(methylsulfonyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C8H14O7S,1, 4-[(benzyloxy)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H18O5,2, and 4-[(anilinocarbonyl)methyl]-2,4,4a,6,8,8a-hexahydro-[1,3]dioxino[5,4-d][1,3]dioxine, C14H17NO6,3. Mesylate ester1at 173 K has triclinicP\overline{1} symmetry and both benzyl ether2at 173 K and phenyl urethane3have monoclinicP21/csymmetry. These structures are of interest because of the conformation of thecis-fused tetraoxadecalin ring system. Thiscis-bicyclo[4.4.0]decane ring system,i.e. cis-decalin, can undergo conformational equilibration. In the two most stable conformers, both six-membered rings adopt a chair conformation. However, there are significant consequences in these two stable conformers, with heteroatom substitution at the 1,3,5,7-ring positions as described. Only one conformation, denoted as `concave' or `inside', is found in these crystal structures. This is consistent with previously reported structures of the 1,1-geminal dihydroxy aldehyde and tosylate analogs. 
    more » « less
  3. null (Ed.)
    Dendrimers are globular, multi-functional, monodisperse macromolecules with perfect structure fidelity. Their architecture is composed of a series of branched polymeric arms, composed within “wedges”, that emanate from a central core. Their structure contains a high density of functional groups located at their periphery, referred to as the “outer shell”. Due to their globular structure, it is assumed that the relative “size” of a dendrimer does not fluctuate greatly between solvents. This may be due to the inability of the branched arms, or wedges, to significantly expand or collapse (comparative to analogous linear polymers) owing to steric barriers from branching, especially at higher generations. In contrast, it is expected that a linear polymer, of similar molecular weight to a dendrimer analog, would have a greater degree of size variation dependent on solvent-polymer interactions. This stems from its innate flexibility and greater conformational flexibility. For this investigation, analogous dendritic and linear bis-MPA polyesters as well as poly(caprolactone) (PCL) were analyzed using size-measuring techniques including gel permeation chromatography (GPC) and diffusion ordered spectroscopy-nuclear magnetic resonance (DOSY- 1 H NMR). 
    more » « less
  4. Abstract Förster resonance energy transfer (FRET) is an established tool for measuring distances between two molecules (donor and acceptor) on the nanometer scale. In the field of polymer science, the use of FRET to measure polymer end‐to‐end distances (Ree) often requires complex synthetic steps to label the chain ends with the FRET pair. This work reports an anthracene‐functionalized chain‐transfer agent for reversible addition‐fragmentation chain‐transfer (RAFT) polymerization, enabling the synthesized chains to be directly end‐labeled with a donor and acceptor without the need for any post‐polymerization functionalization. Noteworthily, this FRET method allows for chain conformation measurements of low molecular weight oligomers in situ, without any work‐up steps. Using FRET to directly measure the averageReeof the oligomer chains during polymerization, the chain growth of methyl methacrylate, styrene, and methyl acrylate is investigated as a function of reaction time, including determining their degree of polymerization (DP). It is found thatDPresults from FRET are consistent with other established measurement methods, such as nuclear magnetic resonance (NMR) spectroscopy. Altogether, this work presents a broadly applicable and straightforward method to in situ characterizeReeof low molecular weight oligomers and theirDPduring reaction. 
    more » « less
  5. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical to the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I). 
    more » « less