skip to main content


Title: Imaging canopy temperature: shedding (thermal) light on ecosystem processes
Summary

Canopy temperatureTcanis a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls onTcanand forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements ofTcanat appropriate spatial and temporal scales. Burgeoning observations ofTcanfrom thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations ofTcanacross a range of ecosystems.

 
more » « less
Award ID(s):
2025755 1802885
PAR ID:
10452006
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
230
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1746-1753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Removal of biologically available nitrogen (N) by the microbially mediated processes denitrification and anaerobic ammonium oxidation (anammox) affects ecosystem N availability. Although few studies have examined temperature responses of denitrification and anammox, previous work suggests that denitrification could become more important than anammox in response to climate warming. To test this hypothesis, we determined whether temperature responses of denitrification and anammox differed in shelf and estuarine sediments from coastal Rhode Island over a seasonal cycle. The influence of temperature and organic C availability was further assessed in a 12‐week laboratory microcosm experiment. Temperature responses, as characterized by thermal optima (Topt) and apparent activation energy (Ea), were determined by measuring potential rates of denitrification and anammox at 31 discrete temperatures ranging from 3 to 59 °C. With a few exceptions,ToptandEaof denitrification and anammox did not differ in Rhode Island sediments over the seasonal cycle. In microcosm sediments,Ea was somewhat lower for anammox compared to denitrification across all treatments. However,Topt did not differ between processes, and neither Ea nor Topt changed with warming or carbon addition. Thus, the two processes behaved similarly in terms of temperature responses, and these responses were not influenced by warming. This led us to reject the hypothesis that anammox is more cold‐adapted than denitrification in our study system. Overall, our study suggests that temperature responses of both processes can be accurately modeled for temperate regions in the future using a single set of parameters, which are likely not to change over the next century as a result of predicted climate warming. We further conclude that climate warming will not directly alter the partitioning of N flow through anammox and denitrification.

     
    more » « less
  2. Summary

    Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.

     
    more » « less
  3. Abstract

    The Community Earth System Model (CESM) is widely used for the prediction and understanding of climate variability and change. Accurate simulation of the behavior of near surface air temperature (T2m) is critical in such a model for addressing societally relevant problems. However, previous versions of CESM suffered from an overestimation of wintertimeT2mvariability in Northern Hemisphere (NH) land regions. Here, it is shown that the latest version of CESM (CESM2) exhibits a much improved representation of wintertimeT2mvariability compared to its predecessor and it now compares well with observations. A series of targeted experiments reveal that an important contributor to this improvement is the local effects of changes to the representation of snow density within the land surface component. Increased snow densities in CESM2 lead to enhanced conductance of the snow layer. As a result, larger heat fluxes across the snow layer are induced in the presence ofT2manomalies, leading to a greater dampening of surface and near surface atmospheric temperature anomalies. The implications for future projections with CESM2 are also considered through comparison of the CESM1 and CESM2 large ensembles. Aligned with the reduction in surface temperature variability, compared to CESM1, CESM2 exhibits reduced ensemble spread in future projections of NH winter mean temperature and a smaller decline in daily wintertimeT2mvariability under climate change. Overall, this improvement has increased the accuracy of CESM2 as a tool for the study of wintertimeT2mvariability and change.

     
    more » « less
  4. Abstract

    The daily variation of ground‐level ozone (O3), a harmful pollutant, is positively correlated with air temperature (T) in many midlatitude land regions in the summer. The observed temporal regression slope between O3andT(dO3/dT) is referred to as the “ozone‐climate change penalty” and has been proposed as a way to predict the impact of future climate warming on O3from observations. Here, we use two chemical transport models to show that the spatial variation of dO3/dTis primarily determined by simultaneous meridional advection of O3andT. Furthermore, the sign and magnitude of dO3/dTcan be approximated by their climatological meridional gradient ratio (O3gradient divided byTgradient). Consideration of expected changes in the meridional gradients ofTand O3due to climate change indicates that dO3/dTwill likely change. Caution is needed when using the observed climate penalty to predict O3changes.

     
    more » « less
  5. Abstract

    High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun‐induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high‐temperature experiment, Temperature Free‐Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high‐temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high‐temperature stress (partial correlationr = 0.60 and −0.23). Near‐infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (ΦF) signals. ΦFfurther excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that ΦFoutperformed SIF yield in responding to physiological stress (r = −0.37). Our findings highlight that ΦFsensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. ΦF, if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change.

     
    more » « less