skip to main content

Title: Variation in macroinvertebrate community structure of functional process zones along the river continuum: New elements for the interpretation of the river ecosystem synthesis

We examined how communities of macroinvertebrates occurring in functional process zones (FPZs) are affected by the location of FPZs in the river continuum. We delineated FPZs for three rivers displaying significant disparities in elevation, annual precipitation, valley shape, and other valley‐scale hydrogeomorphic variables. We extracted corresponding macroinvertebrate community data from the US National Water Quality Monitoring Council database and matched it to the stream order (SO) and FPZ delineations. We examined community structure in the three rivers by partitioning the variances associated with the FPZ and SO delineations. Then, we examined community variation as patterns of beta‐diversity for communities of FPZs in different SOs. In total, 23 FPZ‐SO configurations were examined. SO and FPZ delineations contributed similarly to the variance in the structure of macroinvertebrate communities. Taxa turnover accounted for the majority of the compositional change in communities of FPZs along the river continuum, while the functional composition showed primarily a nested structure. Pairwise comparison of communities for each FPZ along the river continuum showed that significant differences in community composition occurred at high SO in the three examined rivers. In this manuscript, we show that communities of FPZs are only partially comparable along the river continuum as significant compositional changes occur when comparing communities of FPZs in distant SOs. We bring, therefore, new elements to improve the interpretation of the River Ecosystem Synthesis concept that can have wider implications for understanding the biocomplexity of hydrogeomorphic patchiness in river networks.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
River Research and Applications
Page Range / eLocation ID:
p. 665-674
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    River hydrogeomorphology is a potential predictor of ecosystem and assemblage variation. We tested for fish assemblage variation as a function of hydrogeomorphology in a Midwestern US large river, the Wabash River. Fish data were classified by taxonomy and traits and we tested if assemblages varied with river hydrogeomorphology or river distance, defined into 10‐km distinct reaches. Three unique geomorphological units, Functional Process Zones (FPZ), were identified using an ArcGIS hydrogeomorphic model, based primarily on channel width, floodplain width, and down valley slope. Five locations were identified as FPZ A with narrow stream channel, high down valley slope, and an expansive floodplain. Ten locations were identified as FPZ B with a wide river channel and wide floodplain. Thirty‐five locations were identified as FPZ C with wide river channel and a constrained floodplain. The sites were categorized into three stream orders: 5, 6, and 7. We found hydrogeomorphology classified by unique FPZs or by river distance influenced taxonomic and functional fish assemblages for the Wabash River. There was high overlap among fish occurrences among FPZs, but nine species resulted as significant indicators of specific FPZs. Five traits were significant indicators of FPZs: an intermediate Swim Factor score, medium tolerance to silt, small‐large stream size preference, and two Shape Factor categories. Our conclusions are that fish assemblages respond strongly to local geomorphology and river distance, fitting the riverine ecosystem synthesis and the river continuum concept.

    more » « less
  2. Abstract

    River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.

    more » « less
  3. Abstract

    Increasing glacial discharge can lower salinity and alter organic matter (OM) supply in fjords, but assessing the biogeochemical effects of enhanced freshwater fluxes requires understanding of microbial interactions with OM across salinity gradients. Here, we examined microbial enzymatic capabilities—in bulk waters (nonsize‐fractionated) and on particles (≥ 1.6μm)—to hydrolyze common OM constituents (peptides, glucose, polysaccharides) along a freshwater–marine continuum within Tyrolerfjord‐Young Sound. Bulk peptidase activities were up to 15‐fold higher in the fjord than in glacial rivers, whereas bulk glucosidase activities in rivers were twofold greater, despite fourfold lower cell counts. Particle‐associated glucosidase activities showed similar trends by salinity, but particle‐associated peptidase activities were up to fivefold higher—or, for several peptidases, only detectable—in the fjord. Bulk polysaccharide hydrolase activities also exhibited freshwater–marine contrasts: xylan hydrolysis rates were fivefold higher in rivers, while chondroitin hydrolysis rates were 30‐fold greater in the fjord. Contrasting enzymatic patterns paralleled variations in bacterial community structure, with most robust compositional shifts in river‐to‐fjord transitions, signifying a taxonomic and genetic basis for functional differences in freshwater and marine waters. However, distinct dissolved organic matter (DOM) pools across the salinity gradient, as well as a positive relationship between several enzymatic activities and DOM compounds, indicate that DOM supply exerts a more proximate control on microbial activities. Thus, differing microbial enzymatic capabilities, community structure, and DOM composition—interwoven with salinity and water mass origins—suggest that increased meltwater may alter OM retention and processing in fjords, changing the pool of OM supplied to coastal Arctic microbial communities.

    more » « less
  4. Abstract

    Ecological communities are structured by a combination of local processes like habitat filtering and species interactions, and regional forces driven by the dispersal of organisms between localities on a landscape. Previous studies suggest that the position of local communities within a dispersal network can greatly influence the relative influence of these two sets of processes on community assembly. However, the majority of previous investigations have used models or inferences based on observational data to investigate these hypotheses, while experiments directly addressing this question have been rare.

    We experimentally investigated the relative influence of local and regional processes in structuring benthic invertebrate communities using artificial streams. We manipulated three factors—source pool for the macroinvertebrate community (headwater vs. mainstem) as a surrogate of network location, habitat complexity (high vs. low) in the flume, and dispersal (high vs. low)—and followed changes in macroinvertebrate community structure for 8 weeks.

    Previous research suggests that because headwater (HW) streams are isolated within river networks,HWs are less influenced by regional processes relative to more well‐connected mainstems (MSs). We therefore predicted (i) that flumes colonised from aHWsource community would respond more strongly to our dispersal treatment than those colonised byMScommunities becauseMSwere already largely structured through dispersal‐driven processes, and (ii) that bothHWandMScommunities would respond to manipulations of local habitat, indicating that responses to the dispersal treatment were a direct result of dispersal driven dynamics rather than specific affinity for conditions in the flumes.

    Both of our predictions were strongly supported by the results of the experiment. For flumes withHWsource pools, the high dispersal treatment had significantly higher diversity than low dispersal flumes. However, this difference only occurred in flumes withHWsource pools and did not occur in flumes withMSsources. There was also strong evidence of community composition inHWflumes shifting significantly towards the macroinvertebrate composition in our experimental dispersal treatment. The major effect of experimental dispersal was to introduce new species in fairly low abundances as would be expected from dispersal via drift over a relatively short time. BothMSandHWcolonised flumes showed highly significant signals of habitat filtering, though the influence of specific habitat differed between the source types.

    These results support the hypothesis that dispersal driven processes are a more important structuring force in well‐connected areas of networks by experimentally demonstrating the responsiveness of previously isolated communities to experimentally induced dispersal. They also demonstrate that this responsiveness is not due to an inherent difference in habitat affinity since source communities from bothHWs andMSs responded to manipulation of habitat variables. This experiment only simulated one type of dispersal process in streams—drifting—and did not include simulated dispersal from other sources, nor did it include population dynamics given the relatively short duration of the experiment. Nevertheless, the sensitivity of previously isolated communities to one type of simulated dispersal is a powerful indication of the mechanisms that structure these systems.

    more » « less
  5. Abstract

    Although the science and practice of river restoration has progressed in recent years toward more natural approaches, few example projects of headwater step‐pool channels exist in the literature. This study examined a restoration design in the headwaters of Wildcat Creek (Berkeley, California, USA) that allowed the creek to form its own stable morphology, instead of utilizing an engineered form. The creation of an experimental reach—where natural flows redistributed randomly placed clasts into step‐pool sequences after construction of an initial plane‐bed channel—afforded opportunity to test hypotheses regarding a co‐evolution of self‐organizing geomorphic and ecological responses over time. During three seasons following the initial restoration, we documented how the streambed self‐organized into step‐pool sequences by constructing plan maps and surveying changes in channel morphology. Concurrently, we sampled benthic macroinvertebrates in step, pool, and intermediate run habitats in the experimental reach and in an upstream reference reach. Results showed how natural flows created a characteristic step‐pool pattern quickly following the second post‐construction storm season. Taxonomic and functional metrics revealed that benthic macroinvertebrate communities assembled at a similarly rapid pace, becoming more distinct and diverse among habitat types as the step‐pool morphology developed. Multivariate ordination revealed that the benthic macroinvertebrate community in the experimental reach became more similar to that in the reference reach over time. Findings suggest a rapid morphologic and ecological co‐organization in the development of a complex stable step‐pool channel, giving promise for natural approaches in future restoration designs of “letting the river do the work,” to the extent afforded by local socioeconomic factors.

    more » « less