skip to main content

Title: Unraveling the relative role of light and water competition between lianas and trees in tropical forests: A vegetation model analysis

Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Ecology
Medium: X Size: p. 519-540
["p. 519-540"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lianas are prevalent in Neotropical forests, where liana‐tree competition can be intense, resulting in reduced tree growth and survival. The ability of lianas to grow relative to trees during the dry season suggests that liana‐tree competition is also strongest in the dry season. If correct, the predicted intensification of the drying trend over large areas of the tropics in the future may therefore intensify liana‐tree competition resulting in a reduced carbon sink function of tropical forests. However, no study has established whether the liana effect on tree carbon accumulation is indeed stronger in the dry than in the wet season.

    Using 6 years of data from a large‐scale liana removal experiment in Panama, we provide the first experimental test of whether liana effects on tree carbon accumulation differ between seasons. We monitored tree and liana diameter increments at the beginning of the dry and wet season each year to assess seasonal differences in forest‐level carbon accumulation between removal and control plots.

    We found that median liana carbon accumulation was consistently higher in the dry (0.52 Mg C ha−1year−1) than the wet season (0.36 Mg C ha−1year−1) and significantly so in three of the years. Lianas reduced forest‐level median tree carbon accumulation more severely in the wet (1.45 Mg C ha−1year−1) than the dry (1.05 Mg C ha−1year−1) season in all years. However, the relative effect of lianas was similar between the seasons, with lianas reducing forest‐level tree carbon accumulation by 46.9% in the dry and 48.5% in the wet season.

    Synthesis.Our results provide the first experimental demonstration that lianas do not have a stronger competitive effect on tree carbon accumulation during the dry season. Instead, lianas compete significantly with trees during both seasons, indicating a large negative effect of lianas on forest‐level tree biomass increment regardless of seasonal water stress. Longer dry seasons are unlikely to impact liana‐tree competition directly; however, the greater liana biomass increment during dry seasons may lead to further proliferation of liana biomass in tropical forests, with consequences for their ability to store and sequester carbon.

    more » « less
  2. Lianas are structural parasites of trees that cause a reduction in tree growth and an increase in tree mortality. Thereby, lianas negatively impact forest carbon storage as evidenced by liana removal experiments. In this proof-of-concept study, we calibrated the Ecosystem Demography model (ED2) using 3 years of observations of net aboveground biomass (AGB) changes in control and removal plots of a liana removal experiment on Gigante Peninsula, Panama. After calibration, the model could accurately reproduce the observations of net biomass changes, the discrepancies between treatments, as well as the observed components of those changes (mortality, productivity, and growth). Simulations revealed that the long-term total (i.e., above- and belowground) carbon storage was enhanced in liana removal plots (+1.2 kg C m –2 after 3 years, +1.8 kg C m –2 after 10 years, as compared to the control plots). This difference was driven by a sharp increase in biomass of early successional trees and the slow decomposition of liana woody tissues in the removal plots. Moreover, liana removal significantly reduced the simulated heterotrophic respiration (−24%), which resulted in an average increase in net ecosystem productivity (NEP) from 0.009 to 0.075 kg C m –2 yr –1 for 10 years after liana removal. Based on the ED2 model outputs, lianas reduced gross and net primary productivity of trees by 40% and 53%, respectively, mainly through competition for light. Finally, model simulations suggested a profound impact of the liana removal on the soil carbon dynamics: the simulated metabolic litter carbon pool was systematically larger in control plots (+51% on average) as a result of higher mortality rates and faster leaf and root turnover rates. By overcoming the challenge of including lianas and depicting their effect on forest ecosystems, the calibrated version of the liana plant functional type (PFT) as incorporated in ED2 can predict the impact of liana removal at large-scale and its potential effect on long-term ecosystem carbon storage. 
    more » « less
  3. Abstract

    Lianas are a key growth form in tropical forests. Their lack of self‐supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta‐analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (−30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana‐specific traits were also responsible for a significant reduction of tree (−19%) and ecosystem (−7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large‐scale impacts of lianas on forest biogeochemical cycles.

    more » « less
  4. Abstract

    Over the past decades, tropical forests have experienced both compositional and structural changes. In the Neotropics, researchers at multiple sites have observed significant increases in the abundance and biomass of lianas (i.e. woody vines) relative to trees. However, the role of dynamics at early life stages in contributing to increasing liana abundance remains unclear.

    We took advantage of a unique dataset on seedling dynamics over 16 years in ~20 000 1‐m2plots in a tropical forest in Panama to examine temporal and spatial trends in liana and tree seedling abundance.

    We found that the relative abundance of liana seedlings increased across the study period, from 0.18 in 2001 to 0.24 in 2017. However, increases in liana seedling relative abundance appear to have levelled off in more recent years. The observed increases in liana relative abundance appear to be the result of both higher survival and higher recruitment rates of liana seedlings compared to tree seedlings.

    Increasing liana abundance in the seedling layer was not explained by annual variation in dry season length, total rainfall or the proportion of area occupied by canopy gaps. In addition, liana seedlings did not exhibit a demographic advantage (i.e. higher recruitment or survival) over tree seedlings in dry habitats.

    Synthesis.Our results reveal that seedling communities experienced important compositional changes in the past, but liana seedling relative abundance may have stabilized in recent years. Longer‐term monitoring is needed to determine whether tropical forests will continue to experience compositional changes that may alter forest structure and ecosystem function.

    more » « less
  5. Summary

    Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine‐scale observations critical to revealing ecological mechanisms underlying these changes have been lacking.

    To investigate fine‐scale variation in leaf area with seasonality and drought we conducted monthly ground‐based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structuredLAIalong axes of both canopy height and light environments.

    Upper canopyLAIincreased during the dry season, whereas lower canopyLAIdecreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understoryLAIincreased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015–2016 severe El Niño drought.

    Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.

    more » « less