skip to main content


Title: Factors influencing urea use by giant kelp ( Macrocystis pyrifera , Phaeophyceae)
Abstract

Urea is an available and readily used source of nitrogen for giant kelp,Macrocystis pyrifera, but little is known about its potential importance for sustaining growth. Results of kinetic experiments indicate urea uptake saturates at an average maximum rate (Vmax) of 0.73–0.92 μmol N g dw−1h−1with a half saturation constant (Ks) of 1.02–1.08 μM. The affinity of giant kelp for urea was high relative to that reported for other seaweeds. However, results of similar kinetics experiments with natural, co‐occurring phytoplankton communities indicate that the rate of urea uptake by phytoplankton was > 10‐fold higher than that of giant kelp. Urea uptake by giant kelp decreased 3–12% in darkness (relative to in light) compared to a 66–85% decline for phytoplankton. Similar differences were observed for ammonium and nitrate, suggesting that light intensity and photocycles influence the outcome of competition for N between giant kelp and phytoplankton. Monthly measures of urease in kelp tissues revealed persistent activity at levels that were 100‐fold higher than rates of urea uptake (0.13–0.35 μmol N g fw−1min−1). This finding, coupled with unsuccessful efforts to induce additional urease activity through substrate additions, suggests that urease plays a role in giant kelp physiology beyond that of processing urea taken up from the environment. Collectively, our results suggest giant kelp uses multiple forms of N including urea to sustain year‐round growth. Its consistent capacity to acquire N during both day and night may help offset its low uptake rates relative to phytoplankton and increase its ability to compete for N during periods of low N availability.

 
more » « less
NSF-PAR ID:
10452209
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
4
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1190-1200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin‐app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high‐affinity Fe uptake system, so data were screened, yielding 560 single cellkin‐appvalues from 31 low‐Fe stations. We normalizedkin‐appto cell surface area (S.A.) to account for cell‐size differences.

    The resulting bioavailability proxy (kin‐app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe‐siderophore complexes and often approaches that of highly available inorganic Fe′. Station averagedkin‐app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency ofkin‐app/S.A. among stations (ca. five‐fold variation), we computed a grand‐averaged dFe availability, which upon normalization to cell carbon (C) yieldskin‐app/C of 42,200 ± 11,000 L mol C−1 d−1. We utilizekin‐app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability ofkin‐app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe‐limited Equatorial Pacific.

     
    more » « less
  2. Abstract

    The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown algaFucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated ~ 40 m2of the seabed surface area and documented considerable oxygen production by the canopy year‐round. High net oxygen production rates of up to 35 ± 9 mmol m−2h−1were measured under peak irradiance of ~ 1200 μmol photosynthetically active radiation (PAR) m−2s−1in summer. However, high rates > 15 mmol m−2h−1were also measured in late winter (March) under low light intensities < 250 μmol PAR m−2s−1and water temperatures of ~ 1°C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces ofF. vesiculosus.Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two‐thirds of the year, and annual canopyNEMamounted to 25 mol O2m−2yr−1, approximately six‐fold higher than net phytoplankton production. Canopy C export was ~ 0.3 kg C m−2yr−1, comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.

     
    more » « less
  3. Abstract

    The biogeochemical cycling of nitrogen (N) plays a critical role in supporting marine ecosystems and controlling primary production. Nitrification, the oxidation of ammonia (NH3) by microorganisms, is an important process in the marine N cycle, supplying nitrate (), the primary source of N that fuels new phytoplankton growth, and the primary substrate for the microbial process of denitrification. Understanding nitrification in the Chukchi Sea, the shallow sea overlying the continental shelf north of Alaska and the Bering Strait, is particularly important as phytoplankton growth there has been shown to be limited by N. However, the controls on nitrification in the water column and potential effects of climate change remain unknown. This study seeks to characterize the controls on nitrification in the Chukchi Sea. We found light to be a strong control on nitrification rates. Nitrification was undetectable at light levels above 23 μmol photons m−2 s−1. Subsequently, sea ice concentration was related to nitrification, with rates being higher at stations with high ice cover where light transmission to the water column was reduced. High ammonium () concentrations also enhanced nitrification, suggesting that nitrifying organisms were substrate‐limited, likely due to competition for from phytoplankton. Unlike previous experimental studies, we found that nitrification rates were higher under low pH conditions. As the effects of ocean acidification and warming disproportionately impact the Arctic, nitrification rates will undoubtedly be affected. Our results will help guide future studies on potential implications of climate change on the biogeochemistry of N in the Chukchi Sea.

     
    more » « less
  4. Production rates reported for canopy‐forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelpMacrocystis pyriferaare based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity ofM. pyriferaand co‐occurring understory kelpsHedophyllum nigripesandNeoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m−2· year−1from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitudeM. pyriferadwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration ofM. pyriferaforest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment.

     
    more » « less
  5. Abstract

    To what extent multi-omic techniques could reflectin situmicrobial process rates remains unclear, especially for highly diverse habitats like soils. Here, we performed microcosm incubations using sandy soil from an agricultural site in Midwest USA. Microcosms amended with isotopically labeled ammonium and urea to simulate a fertilization event showed nitrification (up to 4.1 ± 0.87 µg N-NO3g−1dry soil d−1) and accumulation of N2O after 192 hours of incubation. Nitrification activity (NH4+ → NH2OH → NO → NO2- → NO3) was accompanied by a 6-fold increase in relative expression of the 16S rRNA gene (RNA/DNA) between 10 and 192 hours of incubation for ammonia-oxidizing bacteriaNitrosomonasandNitrosospira, unlike archaea and comammox bacteria, which showed stable gene expression. A strong relationship between nitrification activity and betaproteobacterial ammonia monooxygenase and nitrite oxidoreductase transcript abundances revealed that mRNA quantitatively reflected measured activity and was generally more sensitive than DNA under these conditions. Although peptides related to housekeeping proteins from nitrite-oxidizing microorganisms were detected, their abundance was not significantly correlated with activity, revealing that meta-proteomics provided only a qualitative assessment of activity. Altogether, these findings underscore the strengths and limitations of multi-omic approaches for assessing diverse microbial communities in soils and provide new insights into nitrification.

     
    more » « less