SUMMARY Long-period (T > 10 s) shear wave reflections between the surface and reflecting boundaries below seismic stations are useful for studying phase transitions in the mantle transition zone (MTZ) but shear-velocity heterogeneity and finite-frequency effects complicate the interpretation of waveform stacks. We follow up on a recent study by Shearer & Buehler (hereafter SB19) of the top-side shear wave reflection Ssds as a probe for mapping the depths of the 410-km and 660-km discontinuities beneath the USArray. Like SB19, we observe that the recorded Ss410s-S and Ss660s-S traveltime differences are longer at stations in the western United States than in the central-eastern United States. The 410-km and 660-km discontinuities are about 40–50 km deeper beneath the western United States than the central-eastern United States if Ss410s-S and Ss660s-S traveltime differences are transformed to depth using a common-reflection point (CRP) mapping approach based on a 1-D seismic model (PREM in our case). However, the east-to-west deepening of the MTZ disappears in the CRP image if we account for 3-D shear wave velocity variations in the mantle according to global tomography. In addition, from spectral-element method synthetics, we find that ray theory overpredicts the traveltime delays of the reverberations. Undulations of the 410-km and 660-km discontinuities are underestimated when their wavelengths are smaller than the Fresnel zones of the wave reverberations in the MTZ. Therefore, modelling of layering in the upper mantle must be based on 3-D reference structures and accurate calculations of reverberation traveltimes.
more »
« less
Lateral Variations of Shear‐Wave Velocity in the D″ Layer Beneath the Indian‐Eurasian Plate Collision Zone
Abstract Seismic tomography has demonstrated that the shear‐wave velocity is relatively high over a 3,000‐km wide region in the lowermost mantle beneath southern and eastern Asia. This seismic anomaly demarcates the current position of slab remnants that may have subducted in the Cretaceous. To further characterize the seismic structure at smaller scales, we measure 929 residual travel time differences (δt) between the phasesScSandSusing recordings of eight earthquakes beneath the Indian Ocean at stations from the Chinese Digital Seismic Network. We interpret variations of δtup to 10 s as due to horizontal shear‐velocity variations in D″ beneath northern India, Nepal, and southwestern China. The shear velocity can vary by as much as 7% over distances shorter than 300 km. Our observations provide additional observational evidence that compositional heterogeneity and possibly melt contribute to the seismic structure of the lower mantle characterized by long‐term subduction and mantle downwelling.
more »
« less
- Award ID(s):
- 1644829
- PAR ID:
- 10452328
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 6
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We invertPg,PmP, andPntraveltimes from an active‐source, multiscale tomography experiment to constrain the three‐dimensional isotropic and anisotropicPwave velocity structure of the topmost oceanic mantle and crust and crustal thickness variations beneath the entire Endeavour segment of the Juan de Fuca Ridge. The isotropic velocity structure is characterized by a semicontinuous, narrow (5‐km‐wide) crustal low‐velocity volume that tracks the sinuous ridge axis. Across the Moho, the low‐velocity volume abruptly broadens to approximately 20 km in width and displays a north‐south linear trend that connects the two overlapping spreading centers bounding the segment. From the seismic results, we estimate the thermal structure and melt distribution beneath the Endeavour segment. The thermal structure indicates that the observed skew, or lateral offset, between the crustal and mantle magmatic systems is a consequence of differences in mechanisms of heat transfer at crustal and mantle depths, with the crust and mantle dominated by advection and conduction, respectively. Melt volume estimates exhibit significant along‐axis variations that coincide with the observed skew between the mantle and crustal magmatic systems, with sites of enhanced crustal melt volumes and vigorous hydrothermal activity corresponding to regions where the mantle and crustal magmatic systems are vertically aligned. These results contradict models of ridge segmentation that predict enhanced and reduced melt supply beneath the segment center and ends, respectively. Our results instead support a model in which segment‐scale skew between the crustal and mantle magmatic systems governs magmatic and hydrothermal processes at mid‐ocean ridges.more » « less
-
null (Ed.)ABSTRACT Seismic rays traveling just below the Moho provide insights into the thermal and compositional properties of the upper mantle and can be detected as Pn phases from regional earthquakes. Such phases are routinely identified in the continents, but in the oceans, detection of Pn phases is limited by a lack of long-term instrument deployments. We present estimates of upper-mantle velocity in the equatorial Atlantic Ocean from Pn arrivals beneath, and flanking, the Mid-Atlantic Ridge and across several transform faults. We analyzed waveforms from 50 earthquakes with magnitude Mw>3.5, recorded over 12 months in 2012–2013 by five autonomous hydrophones and a broadband seismograph located on the St. Peter and St. Paul archipelago. The resulting catalog of 152 ray paths allows us to resolve spatial variations in upper-mantle velocities, which are consistent with estimates from nearby wide-angle seismic experiments. We find relatively high velocities near the St. Paul transform system (∼8.4 km s−1), compared with lower ridge-parallel velocities (∼7.7 km s−1). Hence, this method is able to resolve ridge-transform scale velocity variations. Ray paths in the lithosphere younger than 10 Ma have mean velocities of 7.9±0.5 km s−1, which is slightly lower than those sampled in the lithosphere older than 20 Ma (8.1 km±0.3 s−1). There is no apparent systematic relationship between velocity and ray azimuth, which could be due to a thickened lithosphere or complex mantle upwelling, although uncertainties in our velocity estimates may obscure such patterns. We also do not find any correlation between Pn velocity and shear-wave speeds from the global SL2013sv model at depths <150 km. Our results demonstrate that data from long-term deployments of autonomous hydrophones can be used to obtain rare and insightful estimates of uppermost mantle velocities over hundreds of kilometers in otherwise inaccessible parts of the deep oceans.more » « less
-
Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments.more » « less
-
Abstract Seismic deployments in the Alaska subduction zone provide dense sampling of the seismic wavefield that constrains thermal structure and subduction geometry. We measurePandSattenuation from pairwise amplitude and phase spectral ratios for teleseismic body waves at 206 stations from regional and short‐term arrays. Parallel teleseismic travel‐time measurements provide information on seismic velocities at the same scale. These data show consistently low attenuation over the forearc of subduction systems and high attenuation over the arc and backarc, similar to local‐earthquake attenuation studies but at 10× lower frequencies. The pattern is seen both across the area of normal Pacific subduction in Cook Inlet, and across the Wrangell Volcanic Field where subduction has been debated. These observations confirm subduction‐dominated thermal regime beneath the latter. Travel times show evidence for subducting lithosphere much deeper than seismicity, while attenuation measurements appear mostly reflective of mantle temperature less than 150 km deep, depths where the mantle is closest to its solidus and where subduction‐related melting may take place. Travel times show strong delays over thick sedimentary basins. Attenuation signals show no evidence of absorption by basins, although some basins show signals anomalously rich in high‐frequency energy, with consequent negative apparent attenuation. Outside of basins, these data are consistent with mantle attenuation in the upper 220 km that is quantitatively similar to observations from surface waves and local‐earthquake body waves. Differences betweenPandSattenuation suggest primarily shear‐modulus relaxation. Overall the attenuation measurements show consistent, coherent subduction‐related structure, complementary to travel times.more » « less
An official website of the United States government
