skip to main content


Title: Poly(vinyl alcohol) Hydrogels with Broad‐Range Tunable Mechanical Properties via the Hofmeister Effect
Abstract

Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue‐matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m−3), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m−3, elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.

 
more » « less
NSF-PAR ID:
10452336
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
11
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Load-bearing soft tissues normally show J-shaped stress–strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young’s modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m 3 ), and high fatigue resistance (2,300 ± 500 J/m 2 ). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine. 
    more » « less
  2. Abstract

    Hydrogels containing thermosensitive polymers such as poly(N‐isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+) that coordinate with functional groups along the P(AAc) chains, here a thermoresponsive hydrogel with enhanced mechanical extensibility, strength, and toughness is introduced. Using both experimentation and constitutive modeling, it is found that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self‐healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) decreases slightly with increased Fe3+concentration, the temperature transition range is widened and shifted upward toward that of human body temperature (between 30 and 40 °C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications.

     
    more » « less
  3. Abstract

    Inspired by the avoidance of toxic chemical crosslinkers and harsh reaction conditions, this work describes a poly(vinyl alcohol)‐based (PVA) double‐network (DN) hydrogel aimed at maintaining biocompatibility through the combined use of bio‐friendly additives and freezing–thawing cyclic processing for the application of synthetic soft‐polymer implants. This DN hydrogel is studied using techniques that characterize both its chemical and mechanical behavior. A variety of bio‐friendly additives are screened for their effectiveness at improving the toughness of the PVA hydrogel system in monotonic tension. Starch is selected as the best additive for further tensile testing as it brings about a near 30% increase in ultimate tensile strength and maintains ease of processing. This PVA–starch DN sample is then studied for its tensile fatigue properties through cyclic, strain‐controlled testing to develop a fatigue life curve. Though an increase in monotonic tensile strength is observed, the PVA–starch DN hydrogel does not bring about an improvement in the fatigue behavior as compared to the control. Although synthetic hydrogel reinforcement is widely researched, this work presents the first fatigue analysis of its kind and it is intended to serve as a guide for future fatigue studies of reinforced hydrogels.

     
    more » « less
  4. Abstract

    Conventional design wisdom prevents both bulk and interfacial toughness to be presented in the same hydrogel, because the bulk properties of hydrogels are usually different from the interfacial properties of the same hydrogels on solid surfaces. Here, a fully‐physically‐linked agar (the first network)/poly(N‐hydroxyethyl acrylamide) (pHEAA, the second network), where both networks are physically crosslinked via hydrogen bonds, is designed and synthesized. Bulk agar/pHEAA hydrogels exhibit high mechanical properties (2.6 MPa tensile stress, 8.0 tensile strain, 8000 J m−2tearing energy, 1.62 MJ m−3energy dissipation), high self‐recovery without any external stimuli (62%/30% toughness/stiffness recovery), and self‐healing property. More impressively, without any surface modification, agar/pHEAA hydrogels can be easily and physically anchored onto different nonporous solid substrates of glass, titanium, aluminum, and ceramics to produce superadhesive hydrogel–solid interfaces (i.e., high interfacial toughness of 2000–7000 J m−2). Comparison of as‐prepared and swollen gels in water and hydrogen‐bond‐breaking solvents reveals that strong bulk toughness provides a structural basis for strong interfacial toughness, and both high toughness mainly stem from cooperative hydrogen bonds between and within two networks and between two networks and solid substrates. This work demonstrates a new gel system to achieve superhigh bulk and interfacial toughness on nonporous solid surfaces.

     
    more » « less
  5. Abstract

    Stretchable conductive hydrogels with simultaneous high mechanical strength/modulus, and ultrahigh, stable electrical conductivity are ideal for applications in soft robots, artificial skin, and bioelectronics, but to date, they are still very challenging to fabricate. Herein, sandwich‐structured hybrid hydrogels based on layers of aramid nanofibers (ANFs) reinforced polyvinyl alcohol (PVA) hydrogels and a layer of silver nanowires (AgNWs)/PVA are fabricated by electrospinning combined with vacuum‐assisted filtration. The hybrid ANF‐PVA hydrogels exhibit excellent mechanical properties with the tensile modulus of 10.7–15.4 MPa, tensile strength of 3.3–5.5 MPa, and fracture energy up to 5.7 kJ m−2, primarily attributed to the strong hydrogen bonding interactions between PVA and ANFs and in‐plane alignment of the fibrous structure. Rational design of heterogeneous structure endows the hydrogels with ultrahigh apparent electrical conductivity of 1.66 × 104S m−1, among the highest electrical conductivities ever reported so far for conductive hydrogels. More importantly, this ultrahigh conductivity remains constant upon a broad range of applied strains from 0–90% and over 500 stretching cycles. Furthermore, the hydrogels exhibit excellent Joule heating and electromagnetic interference shielding performances due to the ultrahigh electrical conductivity. These mechanically strong, hybrid hydrogels with ultrahigh and strain‐invariant electrical conductivity represent great promises for many important applications such as flexible electronics.

     
    more » « less