skip to main content


Title: Variation in riparian and stream assemblages across the primary succession landscape of Mount St. Helens, U.S.A.
Abstract

Although most lotic ecosystems experience frequent and sometimes large disturbances, opportunities are uncommon to study primary succession in streams. Exceptions include new stream channels arising from events such as glacial retreat, volcanism, and catastrophic landslides. In 1980, the eruption and massive landslide at Mount St. Helens (WA, U.S.A.) created an entire landscape with five new catchments undergoing primary succession. We asked if riparian and lotic assemblages at early successional stages (36 years after the eruption) showed predictable change along longitudinal gradients within catchments, and whether assemblages were similar among five replicate catchments.

In July 2016, we collected environmental data and characterised riparian, algal, and benthic macroinvertebrate assemblages at 21 stream reaches distributed within and among five neighbouring catchments. We evaluated patterns of richness, abundance, biomass, multivariate taxonomic community structure, and functional traits both longitudinally and among catchments.

We found minimal evidence that longitudinal gradients had developed within catchments at 36 years post‐eruption. Increases in diatom and macroinvertebrate richness with downstream distance were the only biological responses with longitudinal trends. Conversely, we documented substantial variation in community structure of riparian plants, soft‐bodied algae, diatoms, and macroinvertebrates at the among‐catchment scale. Among‐catchment differences consistently separated two eastern catchments from three western catchments, and these two groups also differed in stream water chemistry, water temperature, and geomorphology.

Overall, we documented greater diversity in the young catchments than predicted by ecologists in the years immediately following the eruption, yet functional traits indicate that these catchments are still in relatively early stages of succession. Variation at the among‐catchment scale is likely to be driven in part by hydrological source variation, with the two eastern catchments showing environmental signatures associated with glacial ice‐melt and the three western catchments probably fed primarily by springs from groundwater aquifers. Contemporary flow disturbance regimes also varied among catchments and successional trajectories were probably reset repeatedly in streams experiencing more frequent disturbance.

Similar to new stream channels formed following glacial retreat, our results support a tolerance model of succession in streams. However, contrasting abiotic templates among Mount St. Helens catchments appear to be driving different successional trajectories of riparian plant, algal, and macroinvertebrate assemblages among neighbouring small catchments sharing the same catastrophic disturbance history.

 
more » « less
Award ID(s):
1836387
NSF-PAR ID:
10452450
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Freshwater Biology
Volume:
66
Issue:
5
ISSN:
0046-5070
Page Range / eLocation ID:
p. 1002-1017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less
  2. Abstract

    Studies of succession have a long history in ecology, but rigorous tests of general, unifying principles are rare. One barrier to these tests of theory is the paucity of longitudinal studies that span the broad gradients of disturbance severity that characterize large, infrequent disturbances. The cataclysmic eruption of Mount St. Helens (Washington, USA) in 1980 produced a heterogeneous landscape of disturbance conditions, including primary to secondary successional habitats, affording a unique opportunity to explore how rates and patterns of community change relate to disturbance severity, post‐eruption site conditions and time.

    In this novel synthesis, we combined data from three long‐term (c.30‐year) studies to compare rates and patterns of community change across three ‘zones’ representing a gradient of disturbance severity: primary successional blast zone, secondary successional tree blowdown/standing snag zone and secondary successional intact forest canopy/tephra deposit zone.

    Consistent with theory, rates of change in most community metrics (species composition, species richness, species gain/loss and rank abundance) decreased with time across the disturbance gradient. Surprisingly, rates of change were often greatest at intermediate‐severity disturbance and similarly low at high‐ and low‐severity disturbance. There was little evidence of compositional convergence among or within zones, counter to theory. Within zones, rates of change did not differ among ‘site types’ defined by pre‐ or post‐eruption site characteristics (disturbance history, legacy effects or substrate characteristics).

    Synthesis.The hump‐shaped relationships with disturbance severity runs counter to the theory predicting that community change will be slower during primary than during secondary succession. The similarly low rates of change after high‐ and low‐severity disturbance reflect differing sets of controls: seed limitation and abiotic stress in the blast zone vs. vegetative re‐emergence and low light in the tephra zone. Sites subjected to intermediate‐severity disturbance were the most dynamic, supporting species with a greater diversity of regenerative traits and seral roles (ruderal, forest and non‐forest). Succession in this post‐eruption landscape reflects the complex, multifaceted nature of volcanic disturbance (including physical force, heating and burial) and the variety of ways in which biological systems can respond to these disturbance effects. Our results underscore the value of comparative studies of long‐term, ecological processes for testing the assumptions and predictions of successional theory.

     
    more » « less
  3. Abstract

    Metacommunity theory predicts that the relative importance of regional and local processes structuring communities will change over ecological succession. Determining effects of these processes on taxonomic and evolutionary diversity in spatially structured freshwater habitats of different successional stages may greatly improve understanding of the maintenance of diversity across temporal and spatial scales. In this study, we evaluated crayfish diversity at local and regional scales in pond metacommunities undergoing secondary succession from beaver (Castor canadensis) disturbance. Following theoretical predictions from metacommunity ecology of the increasing importance of local processes over succession, we hypothesised a decline in crayfish local and β diversity over succession from stronger local structuring as the older ponds may provide less suitable habitat than streams.

    Crayfish species and phylogenetic diversity were evaluated in beaver pond metacommunities and reference headwater streams located in three catchment regions. DNA sequences from the mitochondrial cytochrome oxidase I gene were used to assign crayfish to species for community and phylogenetic diversity tests. Local and β diversity were contrasted across beaver ponds ranging in age from 24 to 70 years and as a function of metacommunity processes.

    Counter to predictions, local species diversity among streams and the successional stages of ponds categorised by age class (24–39 years; 42–57 years; 60–70 years) did not differ, but community and phylogenetic convergence occurred in the oldest pond ecosystems. Crayfish community composition differed between the youngest and oldest ponds, resulting from higher abundance in the youngest ponds and community convergence in the oldest ponds. The association between community composition and the environment was strongest in streams and decoupled with pond age. In contrast, the correlation between intraspecific haplotype composition and the environment increased over succession. Among the three metacommunities, the regional crayfish species diversity arose from a combination of the temporal and environmental drivers from beaver‐constructed ecosystems and dispersal limitation within catchments.

    This study represents the first investigation of the taxonomic and phylogenetic diversity response to the successional stages of beaver pond metacommunities. The detection of differential crayfish composition and haplotype sorting to pond age suggests a role for local structuring and further indicates that future studies should acknowledge succession in shaping species diversity at local and regional scales. Dispersal limitation within catchment regions probably contributes to the evolution of crayfish species diversity in metacommunities and the overall maintenance of biodiversity.

    The results support a transition in community and freshwater ecology from a recent emphasis on spatial processes towards the integration of temporal drivers to better identify regulators of taxonomic and phylogenetic diversity across scales.

     
    more » « less
  4. Abstract

    A growing body of research shows that plant genetic factors can influence ecosystem processes and structure communities, but one aspect that has received little study is sex differentiation in dioecious plants. Since headwater streams are reliant on riparian leaf litterfall, plant sex differences in leaf traits may influence in‐stream processes. Sitka willow (Salix sitchensis) at Mount St. Helens is dioecious and heavily infested with the stem‐boring weevil (Cryptorhynchus lapathi), which causes branch dieback and summer litterfall. We found that female willow shrubs tend to grow closer to the stream bank, are more likely to be infected by the weevil, and have 42% higher litter C:N than male willows. These factors may lead to increased litter inputs and slower litter mass loss for female willows. The combination of colonization location, herbivore attack, altered litter quality, and slower mass loss results in female shrubs providing more sustained carbon and nutrient resources to microbes and invertebrates in the early successional streams at Mount St. Helens. In addition, since dioecy is a relatively common trait in riparian habitats, it is possible that plant sex plays a far more interesting role in structuring linked terrestrial–aquatic communities and ecosystem processes than previously understood.

     
    more » « less
  5. Abstract

    Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver‐induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter‐mountain west, an area with high potential for beaver‐assisted restoration.

    The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north‐eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver‐occupied streams.

    Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.

    Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance ofBaetiswithin lotic reaches. More beaver pond taxa were classified as lentic‐dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.

    The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north‐eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.

     
    more » « less