skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate‐driven range shifts of montane species vary with elevation
Abstract AimIn response to warming, species are shifting their ranges towards higher elevations. These elevational range shifts have been documented in a variety of taxonomic groups across latitude. However, the rate and direction of species range shifts in response to warming vary, potentially as a consequence of variation in species traits across elevation. Specifically, diurnal and seasonal climates are often more variable at higher elevations, which results in high‐elevation species that have broader thermal physiologies relative to low‐elevation species. High‐elevation species that are thermal generalists might not need to move as far to track their thermal niche as low‐elevation thermal specialists. We investigated whether rates of range shifts varied systematically with increasing elevation across taxa and regions. LocationSixteen montane regions world‐wide. Time period1850–2013. TaxonNine hundred and eighty‐seven species of plants and animals. MethodsWe gathered published data on elevational range shifts from 20 transect studies comparing historical and recent distributions and examined how rates of range shifts changed across elevation. Specifically, we performed a meta‐analysis to calculate the pooled effect of elevation on species range shifts. ResultsWe found that rates of range shifts show a negative relationship with elevation such that low‐elevation species have moved upslope farther than high‐elevation species on the same transect. This finding was primarily a result of shifts in the upper range limits. We also found that 28% of species shifted downslope against predictions, but elevation did not show a relationship with downslope range shifts. Main conclusionsIdiosyncratic range shifts will significantly alter montane ecological communities, which are home to some of the greatest biodiversity on Earth. Our results demonstrate that species range shifts vary with elevation and might be a consequence of differences in species traits that also vary along montane gradients.  more » « less
Award ID(s):
1930829
PAR ID:
10452479
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
30
Issue:
4
ISSN:
1466-822X
Page Range / eLocation ID:
p. 784-794
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Marine species worldwide are responding to ocean warming by shifting their ranges to new latitudes and, for intertidal species, elevations. Demographic traits can vary across populations spanning latitudinal and elevational ranges, with impacts on population growth. Understanding how demography varies across gradients from range center to edge could help us predict future shifts, species assemblages, and extinction risks. We investigated demographic traits for 2 range-expanding whelk species:Acanthinucella spirataandMexacanthina lugubris.We measured reproductive output across environmental (latitudinal and shore elevation) gradients along the coast of California, USA. We also conducted intensive measurements of offspring condition (survival and thermal tolerance) across shore elevation forM. lugubrisat one site. We found no difference in reproductive output, body size, or larval survival across shore heights forM. lugubris,suggesting that egg-laying behavior buffers developing stages from the relatively high level of thermal variation experienced due to daily tidal emersion. However, across latitudes, reproductive output increased toward the leading range edge forA. spirata, and body size increased for both species. Increased vital rates at the leading range edge could increase whelk population growth and expansion, allowing species to persist under climate change even if contractions occur at trailing edges. 
    more » « less
  2. Restricted elevational ranges are common across tropical montane species, but the mechanisms generating and maintaining these patterns remain poorly resolved. A long-standing hypothesis is that specialized thermal physiology explains these distributions. However, biotic factors such as habitat and interspecific competition have also been proposed to limit tropical species’ elevational ranges. We combined point-level abundances, respirometry-based measurements of metabolic rate, habitat surveys and playback experiments to simultaneously test these three hypotheses for four species of Central American cloud forest songbirds. Contrary to the physiological hypothesis, we found no evidence that thermoregulatory costs constrain species distributions. Instead, thermal conditions across each species’ elevational range remained well within sustainable limits, staying ≤65% of hypothesized thresholds for tropical birds, even at the highest elevations. By contrast, we found some support for a combined role of habitat and competition in shaping elevational ranges. In one related species pair, the dominant lower-elevation species appears restricted by microhabitat, while the higher-elevation species is likely prevented from expanding downslope by the presence of this congener. Taken together, we conclude that thermoregulatory costs are an inadequate explanation for elevational range limits of tropical birds at our site and suggest that biotic factors can be key in shaping these distributions. We provide a Spanish translation of the Abstract in the supplementary materials. 
    more » « less
  3. ABSTRACT An increasing body of evidence has displayed upslope shifts in the high-diversity avian communities of tropical mountains. Such shifts have largely been attributed to warming climates, although their actual mechanisms remain poorly understood. One likely possibility is that changes in species-specific demographic rates underlie elevational range shifts. Fine-scale population monitoring and capture–mark–recapture (CMR) analysis could shed light on these mechanisms, but, until recently, analytical constraints have limited our ability to model multiple demographic rates across bird communities while accounting for transient individuals. Here, we used Bayesian hierarchical multi-species CMR models to estimate the apparent survival, recruitment, and realized population growth rates of 17 bird species along an elevational gradient in the cloud forests of Honduras. For 6 species, we also modeled demographic rates across elevation and time. Although demographic rates varied among species, population growth rates tended to be higher in lower elevation species. Moreover, some species showed higher population growth rates at higher elevations, and elevational differences in growth rates were positively associated with previous estimates of upslope shifts at the study site. We also found that demographic rates showed contrasting trends across the duration of the study, with recruitment decreasing and apparent survival increasing, and stronger effects at lower elevations. Collectively, we provide the methodological tools to encourage more multi-species demographic analyses in other systems, while highlighting the potential for the demographic impacts of global change. We provide a Spanish translation in the Supplementary Materials. 
    more » « less
  4. Tanentzap, Andrew J (Ed.)
    Body size declines are a common response to warming via both plasticity and evolution, but variable size responses have been observed for terrestrial ectotherms. We investigate how temperature-dependent development and growth rates in ectothermic organisms induce variation in size responses. Leveraging long-term data for six montane grasshopper species spanning 1,768–3 901 m, we detect size shifts since ~1960 that depend on elevation and species’ seasonal timing. Size shifts have been concentrated at low elevations, with the early emerging species (those that overwinter as juveniles) increasing in size, while later season species are becoming smaller. Interannual temperature variation accounts for the size shifts. The earliest season species may be able to take advantage of warmer conditions accelerating growth during early spring development, whereas warm temperatures may adversely impact later season species via mechanisms such as increased rates of energy use or thermal stress. Grasshoppers tend to capitalize on warm conditions by both getting bigger and reaching adulthood earlier. Our analysis further reinforces the need to move beyond expectations of universal responses to climate change to consider how environmental exposure and sensitivity vary across elevations and life histories. 
    more » « less
  5. Abstract AimPhysiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features. LocationBornean mountains Kinabalu, Mulu, Pueh and Topap Oso. TaxonRain forest bird communities along elevational gradients. MethodsWe surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable. ResultsWe found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species. Main conclusionsThese findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species. 
    more » « less