skip to main content

Title: Baseflow Age Distributions and Depth of Active Groundwater Flow in a Snow‐Dominated Mountain Headwater Basin

Deeper flows through bedrock in mountain watersheds could be important, but lack of data to characterize bedrock properties limits understanding. To address data scarcity, we combine a previously published integrated hydrologic model of a snow‐dominated, headwater basin of the Colorado River with a new method for dating baseflow age using dissolved gas tracers SF6, CFC‐113, N2, and Ar. The original flow model predicts the majority of groundwater flow through shallow alluvium (<8 m) sitting on top of less permeable bedrock. The water moves too quickly and is unable to reproduce observed SF6concentrations. To match gas data, bedrock permeability is increased to allow a larger fraction of deeper and older groundwater flow (median 112 m). The updated hydrologic model indicates interannual variability in baseflow age (3–12 years) is controlled by the volume of seasonal interflow and tightly coupled to snow accumulation and monsoon rain. Deeper groundwater flow remains stable (11.7 ± 0.7 years) as a function mean historical recharge to bedrock hydraulic conductivity (R/K). A sensitivity analysis suggests that increasing bedrock K effectively moves this alpine basin away from its original conceptualization of hyperlocalized groundwater flow (high R/K) with groundwater age insensitive to changes in water inputs. Instead, this basin is situated close to the precipitation threshold defining recharge controlled groundwater flow conditions (low R/K) in which groundwater age increases with small reductions in precipitation. Work stresses the need to explore alternative methods characterizing bedrock properties in mountain basins to better quantify deeper groundwater flow and predict their hydrologic response to change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mountain‐front recharge (MFR), or all inflow to a basin‐fill aquifer with its source in the mountain block, is an important component of recharge to basin‐fill aquifer systems. Distinguishing and quantifying the surface from subsurface components of MFR is necessary for water resource planning and management, particularly as climate change may impact these components in distinct ways. This study tests the hypothesis that MFR components can be distinguished in long‐screened, basin‐fill production wells by (1) groundwater age and (2) the median elevation of recharge. We developed an MFR characterization approach by combining age distributions in six wells using tritium, krypton‐85, argon‐39, and radiocarbon, and median recharge elevations from noble gas thermometry combined with numerical experiments to determine recharge temperature lapse rates using flow and energy transport modeling. We found that groundwater age distributions provided valuable information for characterizing the dominant flow system behavior captured by the basin‐fill production wells. Tracers indicated the presence of old (i.e., no detectable tritium) water in a well completed in weathered bedrock located close to the mountain front. Two production wells exhibited age distributions of binary mixing between modern and a small fraction of old water, whereas the remaining wells captured predominantly modern flow paths. Noble gas thermometry provided important complementary information to the age distributions; however, assuming constant recharge temperature lapse rates produced improbable recharge elevations. Numerical experiments suggest that surface MFR, if derived from snowmelt, can locally suppress water table temperatures in the basin‐fill aquifer, with implications for recharge elevations estimated from noble gas thermometry.

    more » « less
  2. Abstract

    Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first‐order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated‐soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.

    more » « less
  3. Abstract. Mountainous regions act as the water towers of the worldby producing streamflow and groundwater recharge, a function that isparticularly important in semiarid regions. Quantifying rates of mountainsystem recharge is difficult, and hydrologic models offer a method toestimate recharge over large scales. These recharge estimates are prone touncertainty from various sources including model structure and parameters.The quality of meteorological forcing datasets, particularly in mountainousregions, is a large source of uncertainty that is often neglected ingroundwater investigations. In this contribution, we quantify the impact ofuncertainty in both precipitation and air temperature forcing datasets onthe simulated groundwater recharge in the mountainous watershed of theKaweah River in California, USA. We make use of the integrated surface water–groundwater model, ParFlow.CLM, and several gridded datasets commonly usedin hydrologic studies, downscaled NLDAS-2, PRISM, Daymet, Gridmet, andTopoWx. Simulations indicate that, across all forcing datasets, mountain front recharge is an important component of the water budget in themountainous watershed, accounting for 9 %–72 % of the annual precipitation and ∼90 % of the total mountain system recharge to theadjacent Central Valley aquifer. The uncertainty in gridded air temperatureor precipitation datasets, when assessed individually, results in similarranges of uncertainty in the simulated water budget. Variations in simulatedrecharge to changes in precipitation (elasticities) and air temperature(sensitivities) are larger than 1 % change in recharge per 1 % change inprecipitation or 1 ∘C change in temperature. The total volume ofsnowmelt is the primary factor creating the high water budget sensitivity, and snowmelt volume is influenced by both precipitation and air temperatureforcings. The combined effect of uncertainty in air temperature andprecipitation on recharge is additive and results in uncertainty levels roughly equal to the sum of the individual uncertainties depending on thehydroclimatic condition of the watershed. Mountain system recharge pathwaysincluding mountain block recharge, mountain aquifer recharge, and mountainfront recharge are less sensitive to changes in air temperature than changesin precipitation. Mountain front and mountain block recharge are moresensitive to changes in precipitation than other recharge pathways. Themagnitude of uncertainty in the simulated water budget reflects theimportance of developing high-quality meteorological forcing datasets in mountainous regions. 
    more » « less
  4. null (Ed.)
    Documenting how ground- and surface water systems respond to climate change is crucial to understanding water resources, particularly in the U.S. Great Lakes region, where drastic temperature and precipitation changes are observed. This study presents baseflow and baseflow index (BFI) trend analyses for 10 undisturbed watersheds in Michigan using (1) multi-objective optimization (MOO) and (2) modified Mann–Kendall (MK) tests corrected for short-term autocorrelation (STA). Results indicate a variability in mean baseflow (0.09–8.70 m3/s) and BFI (67.9–89.7%) that complicates regional-scale extrapolations of groundwater recharge. Long-term (>60 years) MK trend tests indicate a significant control of total precipitation (P) and snow- to rainfall transitions on baseflow and BFI. In the Lower Peninsula Rifle River watershed, increasing P and a transition from snow- to rainfall has increased baseflow at a lower rate than streamflow; an overall pattern that may contribute to documented flood frequency increases. In the Upper Peninsula Ford River watershed, decreasing P and a transition from rain- to snowfall had no significant effects on baseflow and BFI. Our results highlight the value of an objectively constrained BFI parameter for shorter-term (<50 years) hydrologic trend analysis because of a lower STA susceptibility. 
    more » « less
  5. Abstract

    The contributions and composition of baseflow sources across an extended recession period were quantified for six subwatersheds of varying size in a structurally complex watershed in coastal California using endmember mixing analysis and related to catchment characteristics (e.g., topography, geology, land use, and soil characteristics). Both shallow subsurface and deep groundwater reservoirs were important contributors for streamflow during low flow periods, and the composition of baseflow sources across subwatersheds was directly related to geologic indices. A binary classification of underlying bedrock permeability (e.g., low vs. high) best explained the changes in shallow subsurface water and deeper groundwater inputs through the seasonal recession. Dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and specific UV absorbance at 254 nm (SUVA254) were used to provide additional insight into endmember characteristics and their contributions to baseflow. Stream water DIC concentrations were broadly controlled by mixing of groundwater and shallow subsurface water endmembers with relatively constant DIC concentrations, while stream water DOC concentrations reflected both spatial and temporal changes in shallow subsurface water DOC. Results from this study show (1) the importance of considering baseflow as a dynamic mixture of water from multiple sources, (2) the effect of geology on source composition at the subwatershed scale during low flow conditions, and (3) the impact of shifting baseflow sources on stream water dissolved carbon concentrations and the utility of using dissolved carbon concentrations to obtain additional insight into temporal variability in baseflow sources.

    more » « less