skip to main content


This content will become publicly available on August 31, 2024

Title: Configurational and Dynamical Heterogeneity in Superionic Li 5.3 PS 4.3 Cl 1.7− x Br x
Abstract

The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics.

 
more » « less
Award ID(s):
1847038
NSF-PAR ID:
10452497
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
51
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 2LiX-GaF3(X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3has been challenging. The ionic conductivity order of 2LiCl-GaF3(3.20 mS/cm) > 2LiBr-GaF3(0.84 mS/cm) > 2LiI-GaF3(0.03 mS/cm) contradicts binary LiCl (10−12S/cm) < LiBr (10−10S/cm) < LiI (10−7S/cm). Using multinuclear7Li,71Ga,19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)npolyanions boost Li+-ion transport by weakening Li+-Xinteractions via charge clustering. In 2LiBr-GaF3and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+and Mg2+.

     
    more » « less
  2. Abstract

    To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br.6Li NMR corroborates swift Li+migration between PS43−and Br, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Brincorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE  showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs.

     
    more » « less
  3. Abstract

    All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.

     
    more » « less
  4. Abstract

    Cycling LiCoO2to above 4.5 V for higher capacity is enticing; however, hybrid O anion‐ and Co cation‐redox (HACR) at high voltages facilitates intrinsic Oα(α < 2) migration, causing oxygen loss, phase collapse, and electrolyte decomposition that severely degrade the battery cyclability. Hereby, commercial LiCoO2particles are operando treated with selenium, a well‐known anti‐aging element to capture oxygen‐radicals in the human body, showing an “anti‐aging” effect in high‐voltage battery cycling and successfully stopping the escape of oxygen from LiCoO2even when the cathode is cycled to 4.62 V. Ab initio calculation and soft X‐ray absorption spectroscopy analysis suggest that during deep charging, the precoated Se will initially substitute some mobile Oαat the charged LiCoO2surface, transplanting the pumped charges from Oαand reducing it back to O2−to stabilize the oxygen lattice in prolonged cycling. As a result, the material retains 80% and 77% of its capacity after 450 and 550 cycles under 100 mA g−1in 4.57 V pouch full‐cells matched with a graphite anode and an ultralean electrolyte (2 g Ah−1).

     
    more » « less
  5. Abstract

    Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single‐molecule magnets (SMMs). Spin‐phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin‐phonon coupling in molecules is challenging. We have found that far‐IR magnetic spectra (FIRMS) of Co(PPh3)2X2(Co‐X; X=Cl, Br, I) reveal rarely observed spin‐phonon coupling as avoided crossings between magnetic andu‐symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero‐field split (ZFS) levels of theS=3/2 electronic ground state were probed by INS, high‐frequency and ‐field EPR (HFEPR), FIRMS, and frequency‐domain FT terahertz EPR (FD‐FT THz‐EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) andgvalues. Ligand‐field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities inCo‐X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin‐phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

     
    more » « less