skip to main content


Title: A numerical investigation of bedrock groundwater recharge and exfiltration on soil mantled hillslopes
Abstract

Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first‐order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated‐soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.

 
more » « less
Award ID(s):
1633831
NSF-PAR ID:
10452512
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
34
Issue:
15
ISSN:
0885-6087
Page Range / eLocation ID:
p. 3311-3330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The advance of a chemical weathering front into the bedrock of a hillslope is often limited by the rate weathering products that can be carried away, maintaining chemical disequilibrium. If the weathering front is within the saturated zone, groundwater flow downslope may affect the rate of transport and weathering—however, weathering also modifies the rock permeability and the subsurface potential gradient that drives lateral groundwater flow. This feedback may help explain why there tends to be neither “runaway weathering” to great depth nor exposed bedrock covering much of the earth and may provide a mechanism for weathering front advance to keep pace with incision of adjacent streams into bedrock. This is the second of a two‐part paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a simple low‐dimensional model based on hydraulic groundwater theory. Here, we show how a simplified kinetic model of 1‐D rock weathering can be extended to consider lateral flow in a 2‐D hillslope. Exact and approximate analytical solutions for the location and thickness of weathering within the hillslope are obtained for a number of cases. A location for the weathering front can be found such that lateral flow is able to export weathering products at the rate required to keep pace with stream incision at steady state. Three pathways of solute export are identified: “diffusing up,” where solutes diffuse up and away from the weathering front into the laterally flowing aquifer; “draining down,” where solutes are advected primarily downward into the unweathered bedrock; and “draining along,” where solutes travel laterally within the weathering zone. For each pathway, a different subsurface topography and overall relief of unweathered bedrock within the hillslope is needed to remove solutes at steady state. The relief each pathway requires depends on the rate of stream incision raised to a different power, such that at a given incision rate, one pathway requires minimal relief and, therefore, likely determines the steady‐state hillslope profile.

     
    more » « less
  2. Abstract

    Upland permafrost regions occupy approximately one third of the Arctic landscape. In upland regions, hydrologic fluxes are influenced by water tracks, curvilinear features on hillslopes that preferentially fill with and route water in response to snowmelt and rainfall when the soil above continuous permafrost thaws in the summer. As continued warming of the Arctic may alter hydrologic cycling leading to increased frequency of extreme hydrologic events like drought and flooding as well as modification of biogeochemical cycling, it is imperative to untangle the interplay between precipitation, runoff, and subsurface flow as water is routed from upland Arctic regions to the Arctic Ocean. This study quantifies how ground surface temperatures affect groundwater discharge from hillslopes with water tracks in the upland Arctic by employing a three‐dimensional, physically based subsurface flow model with variable saturation and freeze and thaw capabilities that is calibrated to field measurements from the Upper Kuparuk River watershed on the North Slope of Alaska, USA. Model analysis indicates that higher ground surface temperatures along water track hillslopes promote increases in groundwater discharge where water tracks act as conduits for large‐recharge events and continue to discharge groundwater into the autumn after the adjacent hillslope has frozen. Simulating the conditions that distinguish water tracks from their hillslope watersheds changes subsurface water storage and ground thermal responses but does not alter the total magnitude of groundwater discharge outside of parameter uncertainty. These findings suggest that water tracks play a complex and critical role in hydrologic cycles of the upland Arctic.

     
    more » « less
  3. Abstract

    The hydrologic dynamics and geomorphic evolution of watersheds are intimately coupled—runoff generation and water storage are controlled by topography and properties of the surface and subsurface, while also affecting the evolution of those properties over geologic time. However, the large disparity between their timescales has made it difficult to examine interdependent controls on emergent hydrogeomorphic properties, such as hillslope length, drainage density, and extent of surface saturation. In this study, we develop a new model coupling hydrology and landscape evolution to explore how runoff generation affects long‐term catchment evolution, and analyze numerical results using a nondimensional scaling framework. We focus on hydrologic processes dominating in humid climates where storm runoff primarily arises from shallow subsurface flow and from precipitation on saturated areas. The model solves hydraulic groundwater equations to predict the water‐table elevation given prescribed, constant groundwater recharge. Water in excess of the subsurface capacity for transport becomes overland flow, which generates shear stress on the surface and may detach and transport sediment. This affects the landscape form that in turn affects runoff generation. We show that (a) four dimensionless parameters describe the possible steady state landscapes that coevolve under steady recharge; (b) hillslope length increases with increasing transmissivity relative to the recharge rate; (c) three topographic metrics—steepness index, Laplacian curvature, and topographic index—together provide a basis for interpreting landscapes that have coevolved with runoff generated via shallow subsurface flow. Finally we discuss the possibilities and limitations for quantitative comparisons between the model results and real landscapes.

     
    more » « less
  4. The depth to unweathered bedrock beneath landscapes influences subsurface runoff paths, erosional processes, moisture availability to biota, and water flux to the atmosphere. Here we propose a quantitative model to predict the vertical extent of weathered rock underlying soil-mantled hillslopes. We hypothesize that once fresh bedrock, saturated with nearly stagnant fluid, is advected into the near surface through uplift and erosion, channel incision produces a lateral head gradient within the fresh bedrock inducing drainage toward the channel. Drainage of the fresh bedrock causes weathering through drying and permits the introduction of atmospheric and biotically controlled acids and oxidants such that the boundary between weathered and unweathered bedrock is set by the uppermost elevation of undrained fresh bedrock, Z b . The slow drainage of fresh bedrock exerts a “bottom up” control on the advance of the weathering front. The thickness of the weathered zone is calculated as the difference between the predicted topographic surface profile (driven by erosion) and the predicted groundwater profile (driven by drainage of fresh bedrock). For the steady-state, soil-mantled case, a coupled analytical solution arises in which both profiles are driven by channel incision. The model predicts a thickening of the weathered zone upslope and, consequently, a progressive upslope increase in the residence time of bedrock in the weathered zone. Two nondimensional numbers corresponding to the mean hillslope gradient and mean groundwater-table gradient emerge and their ratio defines the proportion of the hillslope relief that is unweathered. Field data from three field sites are consistent with model predictions. 
    more » « less
  5. Abstract

    The subsurface processes that mediate the connection between evapotranspiration and groundwater within forested hillslopes are poorly defined. Here, we investigate the origin of diel signals in unsaturated soil water, groundwater, and stream stage on three forested hillslopes in the H.J. Andrews Experimental Forest in western Oregon, USA, during the summer of 2017, and assess how the diurnal signal in evapotranspiration (ET) is transferred through the hillslope and into these stores. There was no evidence of diel fluctuations in upslope groundwater wells, suggesting that tree water uptake in upslope areas does not directly contribute to the diel signal observed in near‐stream groundwater and streamflow. The water table in upslope areas resided within largely consolidated bedrock, which was overlain by highly fractured unsaturated bedrock. These subsurface characteristics inhibited formation of diel signals in groundwater and impeded the transfer of diel signals in soil moisture to groundwater because (1) the bedrock where the water table resides limited root penetration and (2) the low unsaturated hydraulic conductivity of the highly fractured rock weakened the hydraulic connection between groundwater and soil/rock moisture. Transpiration‐driven diel fluctuations in groundwater were limited to near‐stream areas but were not ubiquitous in space and time. The depth to the groundwater table and the geologic structure at that depth likely dictated rooting depth and thus controlled where and when the transpiration‐driven diel fluctuations were apparent in riparian groundwater. This study outlines the role of hillslope hydrogeology and its influence on the translation of evapotranspiration and soil moisture fluctuations to groundwater and stream fluctuations.

     
    more » « less