skip to main content


Title: An improved practical approach for estimating catchment‐scale response functions through wavelet analysis
Abstract

Catchment‐scale response functions, such as transit time distribution (TTD) and evapotranspiration time distribution (ETTD), are considered fundamental descriptors of a catchment's hydrologic and ecohydrologic responses to spatially and temporally varying precipitation inputs. Yet, estimating these functions is challenging, especially in headwater catchments where data collection is complicated by rugged terrain, or in semi‐arid or sub‐humid areas where precipitation is infrequent. Hence, we developed practical approaches for estimating both TTD and ETTD from commonly available tracer flux data in hydrologic inflows and outflows without requiring continuous observations. Using the weighted wavelet spectral analysis method of Kirchner and Neal [2013] for δ18O in precipitation and stream water, we calculated TTDs that contribute to streamflow via spatially and temporally variable flow paths in a sub‐humid mountain headwater catchment in Arizona, United States. Our results indicate that composite TTDs (a combination of Piston Flow and Gamma TTDs) most accurately represented this system for periods up to approximately 1 month, and that a Gamma TTD was most appropriate thereafter during both winter and summer seasons and for the overall time‐weighted TTD; a Gamma TTD type was applicable for all periods during the dry season. The TTD results also suggested that old waters, i.e., beyond the applicable tracer range, represented approximately 3% of subsurface contributions to streamflow. For ETTD and using δ18O as a tracer in precipitation and xylem waters, a Gamma ETTD type best matched the observations for all seasons and for the overall time‐weighted pattern, and stable water isotopes were effective tracers for the majority of vegetation source waters. This study addresses a fundamental question in mountain catchment hydrology; namely, how do the spatially and temporally varying subsurface flow paths that support catchment evapotranspiration and streamflow modulate water quantity and quality over space and time.

 
more » « less
NSF-PAR ID:
10452547
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
35
Issue:
3
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current understanding of the dynamic and slow flow paths that support streamflow in mountain headwater catchments is inhibited by the lack of long-term hydrogeochemical data and the frequent use of short residence time age tracers. To address this, the current study combined the traditional mean transit time and the state-of-the-art fraction of young water ( F yw ) metrics with stable water isotopes and tritium tracers to characterize the dynamic and slow flow paths at Marshall Gulch, a sub-humid headwater catchment in the Santa Catalina Mountains, Arizona, USA. The results show that F yw varied significantly with period when using sinusoidal curve fitting methods (e.g., iteratively re-weighted least squares or IRLS), but not when using the transit time distribution (TTD)-based method. Therefore, F yw estimates from TTD-based methods may be particularly useful for intercomparison of dynamic flow behavior between catchments. However, the utility of 3 H to determine F yw in deeper groundwater was limited due to both data quality and inconsistent seasonal cyclicity of the precipitation 3 H time series data. Although a Gamma-type TTD was appropriate to characterize deep groundwater, there were large uncertainties in the estimated Gamma TTD shape parameter arising from the short record length of 3 H in deep groundwater. This work demonstrates how co-application of multiple metrics and tracers can yield a more complete understanding of the dynamic and slow flow paths and observable deep groundwater storage volumes that contribute to streamflow in mountain headwater catchments. 
    more » « less
  2. Abstract

    Solute transit or travel time distributions (TTDs) in catchments are relevant to both hydrochemical response and inference of hydrologic mechanisms. Long‐tailed TTDs and fractal scaling behavior of stream concentration power spectra (∼1/frequency, or 1/frequency to a power <2) are widely observed in catchment studies. In several catchments, a significant fraction of streamflow is derived from groundwater in shallow fractured bedrock, where matrix diffusion significantly influences solute transport. I present frequency and time domain theoretical analyses of solute transport to quantify the influence of matrix diffusion on fractal scaling and long‐tailed TTDs. The theoretical concentration power spectra exhibit fractal scaling, and the corresponding TTDs resemble a gamma distribution. The tails of the TTDs are influenced by accessible matrix width, exhibiting a sustained power‐law (rather than exponential) decline for large matrix widths. Application to an experimental catchment shows that theoretical spectra match previously reported power spectral estimates derived from concentration measurements.

     
    more » « less
  3. Abstract

    The concept of using representative hillslopes to simulate hydrologically similar areas of a catchment has been incorporated in many hydrologic models but few Earth system models. Here we describe a configuration of the Community Land Model version 5 in which each grid cell is decomposed into one or more multicolumn hillslopes. Within each hillslope, the intercolumn connectivity is specified, and the lateral saturated subsurface flow from each column is passed to its downslope neighbor. We first apply the model to simulate a headwater catchment and assess the results against runoff and evapotranspiration flux measurements. By redistributing soil water within the catchment, the model is able to reproduce the observed difference between evapotranspiration in the upland and lowland portions of the catchment. Next, global simulations based on hypothetical hillslope geomorphic parameters are used to show the model's sensitivity to differences in hillslope shape and discretization. Differences in evapotranspiration between upland and lowland hillslope columns are found to be largest in arid and semiarid regions, while humid tropical and high‐latitude regions show limited evapotranspiration increases in lowlands relative to uplands.

     
    more » « less
  4. Abstract

    Mountain block systems are critical to water resources and have been heavily studied and modeled in recent decades. However, due to lack of field data, there is little consistency in how models represent the mountain block subsurface. While there is a large body of research on subsurface heterogeneity, few studies have evaluated the effect that common conceptual choices modelers make in mountainous systems have on simulated hydrology. Here we simulate the hydrology of a semi‐idealized headwater catchment using six common conceptual models of the mountain block subsurface. These scenarios include multiple representations of hydraulic conductivity decaying with depth, changes in soil depth with topography, and anisotropy. We evaluate flow paths, discharge, and water tables to quantify the impact of subsurface conceptualization on hydrologic behavior in three dimensions. Our results show that adding higher conductivity layers in the shallow subsurface concentrates flow paths near the surface and increases average saturated flow path velocities. Increasing heterogeneity by adding additional layers or introducing anisotropy increases the variance in the relationship between the age and length of saturated flow paths. Discharge behavior is most sensitive to heterogeneity in the shallow subsurface layers. Water tables are less sensitive to layering than they are to the overall conductivity in the domain. Anisotropy restricts flow path depths and controls discharge from storage but has little effect on governing runoff. Differences in the response of discharge, water table depth, and residence time distribution to subsurface representation highlight the need to consider model applications when determining the level of complexity that is needed.

     
    more » « less
  5. Abstract

    Climate change has the potential to impact headwater streams in the Arctic by thawing permafrost and subsequently altering hydrologic regimes and vegetation distribution, physiognomy and productivity. Permafrost thaw and increased subsurface flow have been inferred from the chemistry of large rivers, but there is limited empirical evidence of the impacts to headwater streams. Here we demonstrate how changing vegetation cover and soil thaw may alter headwater catchment hydrology using water budgets, stream discharge trends, and chemistry across a gradient of ground temperature in northwestern Alaska. Colder, tundra-dominated catchments shed precipitation through stream discharge, whereas in warmer catchments with greater forest extent, evapotranspiration (ET) and infiltration are substantial fluxes. Forest soils thaw earlier, remain thawed longer, and display seasonal water content declines, consistent with greater ET and infiltration. Streambed infiltration and water chemistry indicate that even minor warming can lead to increased infiltration and subsurface flow. Additional warming, permafrost loss, and vegetation shifts in the Arctic will deliver water back to the atmosphere and to subsurface aquifers in many regions, with the potential to substantially reduce discharge in headwater streams, if not compensated by increasing precipitation. Decreasing discharge in headwater streams will have important implications for aquatic and riparian ecosystems.

     
    more » « less