skip to main content


Title: Experimental admixture among geographically disjunct populations of an invasive plant yields a global mosaic of reproductive incompatibility and heterosis
Abstract

Invasive species have the ability to rapidly adapt in the new regions where they are introduced. Classic evolutionary theory predicts that the accumulation of genetic differences over time in allopatric isolation may lead to reproductive incompatibilities resulting in decreases in reproductive success and, eventually, to speciation. However, experimental evidence for this theoretical prediction in the context of invasive species is lacking. We aimed to test for the potential of allopatry to determine reproductive success of invasive plants, by experimentally admixing genotypes from six different native and non‐native regions ofCentaurea solstitialis, an invasive forb for which preliminary studies have detected some degree of reproductive isolation between one native and non‐native region.

We grew plants under common garden conditions and outcrossed individuals originating from different source populations in the native and introduced range to evaluate reproductive success in terms of seed to ovule ratio produced. We also assessed geographical and genetic isolation amongC.solstitialisregions as a potential driving factor of reproductive success.

Experimental admixture generated mixed fitness effects, including significant increases, decreases and no differences in reproductive success as compared to crosses within population (control).Centaurea solstitialisinvasive populations in the Americas generated preponderantly negative fitness interactions, regardless of the pollen source, suggesting selection against immigrants and reinforcement. Other non‐native populations (Australia) as well as individuals from the native range of Spain demonstrated an increase in fitness for between‐region crosses, indicating inbreeding. These differences show an asymmetrical response to inter‐regional gene flow, but no evidence of isolation by distance.

Synthesis. The speed of adaptation and the accumulation of reproductive incompatibilities among allopatric populations of invasive species might be more rapid than previously assumed. Our data show a global mosaic of reproductive outputs, showcasing an array of evolutionary processes unfolding during colonization at large biogeographical scales.

 
more » « less
Award ID(s):
1757351
NSF-PAR ID:
10452553
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
5
ISSN:
0022-0477
Page Range / eLocation ID:
p. 2152-2162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plantCentaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.

     
    more » « less
  2. Abstract

    Plants demonstrate exceptional variation in genome size across species, and their genome sizes can also vary dramatically across individuals and populations within species. This aspect of genetic variation can have consequences for traits and fitness, but few studies attributed genome size differentiation to ecological and evolutionary processes. Biological invasions present particularly useful natural laboratories to infer selective agents that might drive genome size shifts across environments and population histories. Here, we test hypotheses for the evolutionary causes of genome size variation across 14 invading populations of yellow starthistle,Centaurea solstitialis, in California, United States. We use a survey of genome sizes and trait variation to ask: (1) Is variation in genome size associated with developmental trait variation? (2) Are genome sizes smaller toward the leading edge of the expansion, consistent with selection for “colonizer” traits? Or alternatively, does genome size increase toward the leading edge of the expansion, consistent with predicted consequences of founder effects and drift? (3) Finally, are genome sizes smaller at higher elevations, consistent with selection for shorter development times? We found that 2C DNA content varied 1.21‐fold among all samples, and was associated with flowering time variation, such that plants with larger genomes reproduced later, with lower lifetime capitula production. Genome sizes increased toward the leading edge of the invasion, but tended to decrease at higher elevations, consistent with genetic drift during range expansion but potentially strong selection for smaller genomes and faster development time at higher elevations. These results demonstrate how genome size variation can contribute to traits directly tied to reproductive success, and how selection and drift can shape that variation. We highlight the influence of genome size on dynamics underlying a rapid range expansion in a highly problematic invasive plant.

     
    more » « less
  3. Abstract

    Why only a small proportion of exotic species become invasive is an unresolved question. Escape from the negative effects of soil biota in the native range can be important for the success of many invasives, but comparative effects of soil biota on less successful exotic species are poorly understood. Studies of other mechanisms suggest that such comparisons might be fruitful. Seeds of three closely relatedCentaureaspecies with overlapping distributions in both their native range of Spain and their nonnative range of California were grown to maturity in pots to obtain an F1 generation of full sibling seeds with reduced maternal effects. Full sibling F1 seeds from both ranges were subsequently grown in pots with inoculations of soil from either the native or nonnative ranges in a fully orthogonal factorial design. We then compared plant biomass among species, regions, and soil sources. Our results indicate that escape from soil pathogens may unleash the highly invasiveCentaurea solstitialis, which was suppressed by native Spanish soils but not by soils from California. In contrast, the two non‐invasiveCentaureaspecies grew the same on all soils. These results add unprecedented phylogenetically controlled insight into why some species invade and others do not.

     
    more » « less
  4. Abstract

    Anthropogenic changes are often studied in isolation but may interact to affect biodiversity. For example, climate change could exacerbate the impacts of biological invasions if climate change differentially affects invasive and native species. Behavioural plasticity may mitigate some of the impacts of climate change, but species vary in their degree of behavioural plasticity. In particular, invasive species may have greater behavioural plasticity than native species since plasticity helps invasive species establish and spread in new environments. This plasticity could make invasives better able to cope with climate change.

    Here our goal was to examine whether reproductive behaviours and behavioural plasticity vary between an introduced and a nativeOnthophagusdung beetle species in response to warming temperatures and how differences in behaviour influence offspring survival.

    Using a repeated measures design, we exposed small colonies of introducedO. taurusand nativeO. hecateto three temperature treatments, including a control, low warming and high warming treatment, and then measured reproductive behaviours, including the number, size and burial depth of brood balls. We reared offspring in their brood balls in developmental temperatures that matched those of the brood ball burial depth to quantify survival.

    We found that the introducedO. taurusproduced more brood balls and larger brood balls, and buried brood balls deeper than the nativeO. hecatein all treatments. However, the two species did not vary in the degree of behavioural plasticity in response to warming. Differences in reproductive behaviours did affect survival such that warming temperatures had a greater effect on survival of offspring of nativeO. hecatecompared to introducedO. taurus.

    Overall, our results suggest that differences in behaviour between native and introduced species are one mechanism through which climate change may exacerbate negative impacts of biological invasions.

     
    more » « less
  5. Abstract

    The size and frequency of resource pulses can affect plant interactions and increase the abundance of invasive species relative to native species. We examined resource pulses generated during the desiccation and rehydration of communities of native biological soil crust (biocrust)‐forming mosses, in the context of positive associations between biocrusts and the invasive forb,Centaurea stoebe.

    We surveyedCentaureaand biocrust cover and evaluated how interactions amongCentaurea, biocrusts and water pulses influenced plant biomass and soil nitrogen in a field experiment.Centaureaseedling and biocrust interactions were also compared in a greenhouse experiment to evaluate differences related to life stage.

    In field surveys,Centaureaand biocrusts were positively associated. Across water pulse treatments, biocrust biomass decreased whenCentaureawas removed, indicating thatCentaureafacilitated biocrusts. Biocrusts did not affect adultCentaureain the field, butCentaureaseedling biomass was greater when grown with biocrusts in the greenhouse. Water pulses did not affect plant biomass, but interactions betweenCentaureaand biocrusts corresponded with variation in the effect of water pulses on soil nitrogen which were not evident whenCentaureaor biocrusts were grown alone. Twenty‐four hours after large water pulses were added, soilwas nine times higher in plots where biocrusts andCentaureaco‐occurred compared with small water pulse plots. In these same plots, soiltended to be lower at the end of the experiment.

    These results highlight positive interactions between an invasive exotic forb and native moss biocrust. Water pulses influenced soil nitrogen availability when both plants co‐occurred, but did not affect plant biomass, suggesting that resource pulses and species interactions can interact to affect ecosystem processes.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less